PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (3315)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  [No title available] 
PMCID: PMC3906960  PMID: 24252282
2.  [No title available] 
PMCID: PMC3906961  PMID: 24344138
3.  [No title available] 
PMCID: PMC3906962  PMID: 24284817
4.  [No title available] 
PMCID: PMC3906963  PMID: 24287810
5.  [No title available] 
PMCID: PMC3906964  PMID: 24284818
6.  [No title available] 
PMCID: PMC3906965  PMID: 24284814
7.  [No title available] 
PMCID: PMC3906966  PMID: 24284815
8.  [No title available] 
PMCID: PMC3906967  PMID: 24284816
9.  [No title available] 
PMCID: PMC3906968  PMID: 24287812
10.  [No title available] 
PMCID: PMC3906969  PMID: 24363335
11.  [No title available] 
PMCID: PMC3906970  PMID: 24287813
12.  [No title available] 
PMCID: PMC3906972  PMID: 24355404
13.  [No title available] 
PMCID: PMC3906973  PMID: 24284813
14.  [No title available] 
PMCID: PMC3906974  PMID: 24344139
15.  [No title available] 
PMCID: PMC3906975
16.  [No title available] 
PMCID: PMC3906976
17.  The presence of coconut in southern Panama in pre-Columbian times: clearing up the confusion 
Annals of Botany  2013;113(1):1-5.
Background
The pre-Columbian presence of coconut on the Pacific coast of Panama is attested by a number of independent written accounts. However, recent papers question their accuracy and conclude that coconut was introduced to the region by the Spaniards after their conquests.
Scope
In order to examine the value of such claims, an extensive search was conducted of the relevant historical accounts of coconut in America and in the Orient.
Key Results
The Spanish chronicler Oviedo (1478–1557) is found to have effectively used fruit and seed size to distinguish coconut from other palms. In addition, it is shown that he has been inaccurately faulted with incorrectly representing a cluster of coconuts. The original drawing, a cluster of a native Bactris, was in the marginalia and was only assigned to coconut after Oviedo's death. Finally, the location is identified of a coastal Panamanian site described by Pedro Mártir de Anglería and where tidal dispersal of coconuts was observed.
Conclusions
This previously overlooked evidence confirms the pre-historical presence of coconut in Panama. Genetic data indicate that it must have been brought there directly or indirectly from the Philippines. But when, where and by whom remains a subject of research. Further molecular marker studies, computer simulation of natural drift and archaeological research could contribute to this research.
doi:10.1093/aob/mct244
PMCID: PMC3864718  PMID: 24227445
Coconut; Cocos nucifera; New World flora; Panama; oceanic current dissemination; Spanish explorations; Central America; early trans-Pacific voyaging
18.  Stasis and convergence characterize morphological evolution in eupolypod II ferns 
Annals of Botany  2013;113(1):35-54.
Background and Aims
Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional ‘athyrioid’ ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology.
Methods
Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete.
Key Results
The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species.
Conclusions
The integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae – a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation.
doi:10.1093/aob/mct247
PMCID: PMC3864719  PMID: 24197753
Athyriaceae; character state reconstruction; convergent evolution; Diplaziopsidaceae; eupolypods II; morphological evolution; Polypodiales; rate of evolution; Rhachidosoraceae; symplesiomorphy; Woodsiaceae
19.  An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes 
Annals of Botany  2013;113(1):7-18.
Background
Iron (Fe) deficiency in crops is a worldwide agricultural problem. Plants have evolved several strategies to enhance Fe acquisition, but increasing evidence has shown that the intrinsic plant-based strategies alone are insufficient to avoid Fe deficiency in Fe-limited soils. Soil micro-organisms also play a critical role in plant Fe acquisition; however, the mechanisms behind their promotion of Fe acquisition remain largely unknown.
Scope
This review focuses on the possible mechanisms underlying the promotion of plant Fe acquisition by soil micro-organisms.
Conclusions
Fe-deficiency-induced root exudates alter the microbial community in the rhizosphere by modifying the physicochemical properties of soil, and/or by their antimicrobial and/or growth-promoting effects. The altered microbial community may in turn benefit plant Fe acquisition via production of siderophores and protons, both of which improve Fe bioavailability in soil, and via hormone generation that triggers the enhancement of Fe uptake capacity in plants. In addition, symbiotic interactions between micro-organisms and host plants could also enhance plant Fe acquisition, possibly including: rhizobium nodulation enhancing plant Fe uptake capacity and mycorrhizal fungal infection enhancing root length and the nutrient acquisition area of the root system, as well as increasing the production of Fe3+ chelators and protons.
doi:10.1093/aob/mct249
PMCID: PMC3864720  PMID: 24265348
Hormones; iron deficiency; microbial community structure; siderophore; symbiosis
20.  Campanulaceae: a family with small seeds that require light for germination 
Annals of Botany  2013;113(1):135-143.
Background and Aims
The Campanulaceae is a large cosmopolitan family, but is understudied in terms of germination, and seed biology in general. Small seed mass (usually in the range 10–200 µg) is a noteworthy trait of the family, and having small seeds is commonly associated with a light requirement. Thus, the purpose of this study was to investigate the effect of light on germination in 131 taxa of the Campanulaceae family, from all five continents of its distribution.
Methods
For all taxa, seed germination was tested in light (8 or 12 h photoperiod) and continuous darkness under constant and alternating temperatures. For four taxa, the effect of light on germination was examined over a wide range of temperatures on a thermogradient plate, and the possible substitution of the light requirement by gibberellic acid and nitrate was examined in ten taxa.
Key Results
For all 131 taxa, seed germination was higher in light than in darkness for every temperature tested. Across species, the light requirement decreased significantly with increasing seed mass. For larger seeded species, germination in the dark reached higher levels under alternating than under constant temperatures. Gibberellic acid promoted germination in darkness whereas nitrates partially substituted for a light requirement only in species showing some dark germination.
Conclusions
A light requirement for germination, observed in virtually all taxa examined, constitutes a collective characteristic of the family. It is postulated that smaller seeded taxa might germinate only on the soil surface or at shallow depths, while larger seeded species might additionally germinate when buried in the soil if cued to do so by fluctuating temperatures.
doi:10.1093/aob/mct250
PMCID: PMC3864721  PMID: 24232382
Campanulaceae; germination; light requirement; seed mass; constant vs. alternating temperatures; gibberellic acid; nitrate
21.  Plant development controls leaf area expansion in alfalfa plants competing for light 
Annals of Botany  2013;113(1):145-157.
Background and Aims
The growth of crops in a mixture is more variable and difficult to predict than that in pure stands. Light partitioning and crop leaf area expansion play prominent roles in explaining this variability. However, in many crops commonly grown in mixtures, including the forage species alfalfa, the sensitivity and relative importance of the physiological responses involved in the light modulation of leaf area expansion are still to be established. This study was designed to assess the relative sensitivity of primary shoot development, branching and individual leaf expansion in alfalfa in response to light availability.
Methods
Two experiments were carried out. The first studied isolated plants to assess the potential development of different shoot types and growth periods. The second consisted of manipulating the intensity of competition for light using a range of canopies in pure and mixed stands at two densities so as to evaluate the relative effects on shoot development, leaf growth, and plant and shoot demography.
Key Results
Shoot development in the absence of light competition was deterministic (constant phyllochrons of 32·5 °Cd and 48·2 °Cd for primary axes and branches, branching probability of 1, constant delay of 1·75 phyllochron before axillary bud burst) and identical irrespective of shoot type and growth/regrowth periods. During light competition experiments, changes in plant development explained most of the plant leaf area variations, with average leaf size contributing to a lesser extent. Branch development and the number of shoots per plant were the leaf area components most affected by light availability. Primary axis development and plant demography were only affected in situations of severe light competition.
Conclusions
Plant leaf area components differed with regard to their sensitivity to light competition. The potential shoot development model presented in this study could serve as a framework to integrate light responses in alfalfa crop models.
doi:10.1093/aob/mct251
PMCID: PMC3864722  PMID: 24201140
Medicago sativa; leaf area; light competition; branching; shoot; development; leaf growth; morphogenesis; model
22.  Autotetraploids of Vicia cracca show a higher allelic richness in natural populations and a higher seed set after artificial selfing than diploids 
Annals of Botany  2013;113(1):159-170.
Background and Aims
Despite the great importance of autopolyploidy in the evolution of angiosperms, relatively little attention has been devoted to autopolyploids in natural polyploid systems. Several hypotheses have been proposed to explain why autopolyploids are so common and successful, for example increased genetic diversity and heterozygosity and the transition towards selfing. However, case studies on patterns of genetic diversity and on mating systems in autopolyploids are scarce. In this study allozymes were employed to investigate the origin, population genetic diversity and mating system in the contact zone between diploid and assumed autotetraploid cytotypes of Vicia cracca in Central Europe.
Methods
Four enzyme systems resolved in six putative loci were investigated in ten diploid, ten tetraploid and five mixed-ploidy populations. Genetic diversity and heterozygosity, partitioning of genetic diversity among populations and cytotypes, spatial genetic structure and fixed heterozygosity were analysed. These studies were supplemented by a pollination experiment and meiotic chromosome observation.
Key Results and Conclusions
Weak evidence of fixed heterozygosity, a low proportion of unique alleles and genetic variation between cytotypes similar to the variation among populations within cytotypes supported the autopolyploid origin of tetraploids, although no multivalent formation was observed. Tetraploids possessed more alleles than diploids and showed higher observed zygotic heterozygosity than diploids, but the observed gametic heterozygosity was similar to the value observed in diploids and smaller than expected under panmixis. Values of the inbreeding coefficient and differentiation among populations (ρST) suggested that the breeding system in both cytotypes of V. cracca is mixed mating with prevailing outcrossing. The reduction in seed production of tetraploids after selfing was less than that in diploids. An absence of correlation between genetic and geographic distances and high differentiation among neighbouring tetraploid populations supports the secondary contact hypothesis with tetraploids of several independent origins in Central Europe. Nevertheless, the possibility of a recent in situ origin of tetraploids through a triploid bridge in some regions is also discussed.
doi:10.1093/aob/mct252
PMCID: PMC3864723  PMID: 24232383
Autopolyploidy; allozymes; genetic diversity; heterozygosity; fixed heterozygosity; genetic differentiation; F-statistics; inbreeding depression; mating system; artificial pollination; meiotic chromosomes; Vicia cracca
23.  Genetic and palaeo-climatic evidence for widespread persistence of the coastal tree species Eucalyptus gomphocephala (Myrtaceae) during the Last Glacial Maximum 
Annals of Botany  2013;113(1):55-67.
Background and Aims
Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia.
Methods
The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models.
Key Results
The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r2 = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline.
Conclusions
The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.
doi:10.1093/aob/mct253
PMCID: PMC3864724  PMID: 24284819
Australian biogeography; climate change; coastal geomorphology; Eucalyptus gomphocephala; founder effects; Last Glacial Maximum; LGM; microsatellites; Myrtaceae; palaeodistribution modelling; phylogeography; southern hemisphere; south-western Australia; tuart
24.  Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis 
Annals of Botany  2013;113(1):69-78.
Backround and Aims
It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis.
Methods
Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster).
Key Results
Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII).
Conclusions
According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved plant nutrient status and photosynthetic performance. This study supports the original cost/benefit model proposed by T. Givnish almost 30 years ago and underlines the importance of plant carnivory for increasing phosphorus, and thereby photosynthesis.
doi:10.1093/aob/mct254
PMCID: PMC3864725  PMID: 24201141
Carnivorous plant; cost/benefit; Drosera capensis; cape sundew; fruit flies; digestive enzymes; nitrogen; phosphorus; photosynthesis; sundew
25.  Molecular and quantitative trait variation within and among small fragmented populations of the endangered plant species Psilopeganum sinense 
Annals of Botany  2013;113(1):79-86.
Background and Aims
Natural selection and genetic drift are important evolutionary forces in determining genetic and phenotypic differentiation in plant populations. The extent to which these two distinct evolutionary forces affect locally adaptive quantitative traits has been well studied in common plant and animal species. However, we know less about how quantitative traits respond to selection pressures and drift in endangered species that have small population sizes and fragmented distributions. To address this question, this study assessed the relative strengths of selection and genetic drift in shaping population differentiation of phenotypic traits in Psilopeganum sinense, a naturally rare and recently endangered plant species.
Methods
Population differentiation at five quantitative traits (QST) obtained from a common garden experiment was compared with differentiation at putatively neutral microsatellite markers (FST) in seven populations of P. sinense. QST estimates were derived using a Bayesian hierarchical variance component method.
Key Results
Trait-specific QST values were equal to or lower than FST. Neutral genetic diversity was not correlated with quantitative genetic variation within the populations of P. sinense.
Conclusions
Despite the prevalent empirical evidence for QST > FST, the results instead suggest a definitive role of stabilizing selection and drift leading to phenotypic differentiation among small populations. Three traits exhibited a significantly lower QST relative to FST, suggesting that populations of P. sinense might have experienced stabilizing selection for the same optimal phenotypes despite large geographical distances between populations and habitat fragmentation. For the other two traits, QST estimates were of the same magnitude as FST, indicating that divergence in these traits could have been achieved by genetic drift alone. The lack of correlation between molecular marker and quantitative genetic variation suggests that sophisticated considerations are required for the inference of conservation measures of P. sinense from neutral genetic markers.
doi:10.1093/aob/mct255
PMCID: PMC3864726  PMID: 24265350
Psilopeganum sinense; Chinese privet; stabilizing selection; genetic drift; quantitative traits; QST; neutral microsatellite markers; FST; local adaptation, habitat fragmentation

Results 1-25 (3315)