Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Lessons from morpholino-based screening in zebrafish 
Briefings in Functional Genomics  2011;10(4):181-188.
Morpholino oligonucleotides (MOs) are an effective, gene-specific antisense knockdown technology used in many model systems. Here we describe the application of MOs in zebrafish (Danio rerio) for in vivo functional characterization of gene activity. We summarize our screening experience beginning with gene target selection. We then discuss screening parameter considerations and data and database management. Finally, we emphasize the importance of off-target effect management and thorough downstream phenotypic validation. We discuss current morpholino limitations, including reduced stability when stored in aqueous solution. Advances in MO technology now provide a measure of spatiotemporal control over MO activity, presenting the opportunity for incorporating more finely tuned analyses into MO-based screening. Therefore, with careful management, MOs remain a valuable tool for discovery screening as well as individual gene knockdown analysis.
PMCID: PMC3144740  PMID: 21746693
morpholinos; zebrafish; knockdown
2.  in vivo protein trapping produces a functional expression codex of the vertebrate proteome 
Nature Methods  2011;8(6):506-515.
We describe a conditional in vivo protein trap mutagenesis system that reveals spatio-temporal protein expression dynamics and assesses gene function in the vertebrate Danio rerio. Integration of pGBT-RP2 (RP2), a gene-breaking transposon containing a protein trap, efficiently disrupts gene expression with >97% knockdown of normal transcript levels while simultaneously reporting protein expression of each locus. The mutant alleles are revertible in somatic tissues via Cre recombinase or splice-site blocking morpholinos, thus representing the first systematic conditional mutant alleles outside the mouse model. We report a collection of 350 zebrafish lines including a diverse array of molecular loci. RP2 integrations reveal the complexity of genomic architecture and gene function in a living organism and can provide information on protein subcellular localization. The RP2 mutagenesis system is a step towards a unified codex of protein expression and direct functional annotation of the vertebrate genome.
PMCID: PMC3306164  PMID: 21552255

Results 1-2 (2)