Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Targeted enrichment of genomic DNA regions for next-generation sequencing 
Briefings in Functional Genomics  2011;10(6):374-386.
In this review, we discuss the latest targeted enrichment methods and aspects of their utilization along with second-generation sequencing for complex genome analysis. In doing so, we provide an overview of issues involved in detecting genetic variation, for which targeted enrichment has become a powerful tool. We explain how targeted enrichment for next-generation sequencing has made great progress in terms of methodology, ease of use and applicability, but emphasize the remaining challenges such as the lack of even coverage across targeted regions. Costs are also considered versus the alternative of whole-genome sequencing which is becoming ever more affordable. We conclude that targeted enrichment is likely to be the most economical option for many years to come in a range of settings.
PMCID: PMC3245553  PMID: 22121152
targeted enrichment; next-generation sequencing; genome partitioning; exome; genetic variation
2.  The application of massively parallel sequencing technologies in diagnostics 
Massively parallel sequencing (MPS) is rapidly evolving and is starting to be utilized by the clinical field as well as diagnostics. We describe major recent advances that have come about as a result of the application of MPS in the biomedical field and the first approaches in medical genetics that have made use of MPS. Without any doubt, MPS has proven to be a very powerful technique. To unravel the capabilities of MPS for patient care, the most important aspect for the acceptance of MPS within clinics and diagnostics is to guarantee that the large amount of data undergoes vitally important analyses and interpretation and is securely managed.
PMCID: PMC2990631  PMID: 21173878
3.  Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks 
PLoS ONE  2007;2(11):e1218.
Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of “balancer” proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the “elasticity” of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions.
PMCID: PMC2077926  PMID: 18043732

Results 1-3 (3)