PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (102)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4 
Nature genetics  2014;46(5):427-429.
Small cell carcinoma of the ovary of hypercalcemic type (SCCOHT) is an extremely rare, aggressive cancer affecting children and young women. We identified germline and somatic inactivating mutations in the SWI/SNF chromatin-remodeling gene SMARCA4 in 69% (9/13) of SCCOHT cases in addition to SMARCA4 protein loss in 82% (14/17) of SCCOHT tumors but in only 0.4% (2/485) of other primary ovarian tumors. These data implicate SMARCA4 in SCCOHT oncogenesis.
doi:10.1038/ng.2928
PMCID: PMC4332808  PMID: 24658001
2.  Comprehensive miRNA sequence analysis reveals survival differences in diffuse large B-cell lymphoma patients 
Genome Biology  2015;16(1):18.
Background
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease, with 30% to 40% of patients failing to be cured with available primary therapy. microRNAs (miRNAs) are RNA molecules that attenuate expression of their mRNA targets. To characterize the DLBCL miRNome, we sequenced miRNAs from 92 DLBCL and 15 benign centroblast fresh frozen samples and from 140 DLBCL formalin-fixed, paraffin-embedded tissue samples for validation.
Results
We identify known and candidate novel miRNAs, 25 of which are associated with survival independently of cell-of-origin and International Prognostic Index scores, which are established indicators of outcome. Of these 25 miRNAs, six miRNAs are significantly associated with survival in our validation cohort. Abundant expression of miR-28-5p, miR-214-5p, miR-339-3p, and miR-5586-5p is associated with superior outcome, while abundant expression of miR-324-5p and NOVELM00203M is associated with inferior outcome. Comparison of DLBCL miRNA-seq expression profiles with those from other cancer types identifies miRNAs that were more abundant in B-cell contexts. Unsupervised clustering of miRNAs identifies two clusters of patients that have distinct differences in their outcomes. Our integrative miRNA and mRNA expression analyses reveal that miRNAs increased in abundance in DLBCL appear to regulate the expression of genes involved in metabolism, cell cycle, and protein modification. Additionally, these miRNAs, including one candidate novel miRNA, miR-10393-3p, appear to target chromatin modification genes that are frequent targets of somatic mutation in non-Hodgkin lymphomas.
Conclusions
Our comprehensive sequence analysis of the DLBCL miRNome identifies candidate novel miRNAs and miRNAs associated with survival, reinforces results from previous mutational analyses, and reveals regulatory networks of significance for lymphomagenesis.
Electronic supplementary material
The online version of this article (doi:10.1186/s13059-014-0568-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s13059-014-0568-y
PMCID: PMC4308918
3.  Where are we now? And where are we going? A report from the Accelerate Brain Cancer Cure (ABC2) Low-grade Glioma Research Workshop 
Neuro-Oncology  2013;16(2):173-178.
Diffuse gliomas consist of both low- and high-grade varieties, each with distinct morphological and biological features. The often extended periods of relative indolence exhibited by low-grade gliomas (LGG; WHO grade II) differ sharply from the aggressive, rapidly fatal clinical course of primary glioblastoma (GBM; WHO grade IV). Nevertheless, until recently, the molecular foundations underlying this stark biological contrast between glioma variants remained largely unknown. The discoveries of distinctive and highly recurrent genomic and epigenomic abnormalities in LGG have both informed a more accurate classification scheme and pointed to viable avenues for therapeutic development. As such, the field of neuro-oncology now seems poised to capitalize on these gains to achieve significant benefit for LGG patients. This report will briefly recount the proceedings of a workshop held in January 2013 and hosted by Accelerate Brain Cancer Cure (ABC2) on the subject of LGG. While much of the meeting covered recent insights into LGG biology, its focus remained on how best to advance the clinical management, whether by improved preclinical modeling, more effective targeted therapeutics and clinical trial design, or innovative imaging technology.
doi:10.1093/neuonc/not229
PMCID: PMC3895389  PMID: 24305708
clinical trials; genomics; low-grade glioma; personalized medicine
4.  The Somatic Genomic Landscape of Glioblastoma 
Cell  2013;155(2):462-477.
We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.
doi:10.1016/j.cell.2013.09.034
PMCID: PMC3910500  PMID: 24120142
5.  Comprehensive molecular characterization of gastric adenocarcinoma 
Bass, Adam J. | Thorsson, Vesteinn | Shmulevich, Ilya | Reynolds, Sheila M. | Miller, Michael | Bernard, Brady | Hinoue, Toshinori | Laird, Peter W. | Curtis, Christina | Shen, Hui | Weisenberger, Daniel J. | Schultz, Nikolaus | Shen, Ronglai | Weinhold, Nils | Kelsen, David P. | Bowlby, Reanne | Chu, Andy | Kasaian, Katayoon | Mungall, Andrew J. | Robertson, A. Gordon | Sipahimalani, Payal | Cherniack, Andrew | Getz, Gad | Liu, Yingchun | Noble, Michael S. | Pedamallu, Chandra | Sougnez, Carrie | Taylor-Weiner, Amaro | Akbani, Rehan | Lee, Ju-Seog | Liu, Wenbin | Mills, Gordon B. | Yang, Da | Zhang, Wei | Pantazi, Angeliki | Parfenov, Michael | Gulley, Margaret | Piazuelo, M. Blanca | Schneider, Barbara G. | Kim, Jihun | Boussioutas, Alex | Sheth, Margi | Demchok, John A. | Rabkin, Charles S. | Willis, Joseph E. | Ng, Sam | Garman, Katherine | Beer, David G. | Pennathur, Arjun | Raphael, Benjamin J. | Wu, Hsin-Ta | Odze, Robert | Kim, Hark K. | Bowen, Jay | Leraas, Kristen M. | Lichtenberg, Tara M. | Weaver, Stephanie | McLellan, Michael | Wiznerowicz, Maciej | Sakai, Ryo | Getz, Gad | Sougnez, Carrie | Lawrence, Michael S. | Cibulskis, Kristian | Lichtenstein, Lee | Fisher, Sheila | Gabriel, Stacey B. | Lander, Eric S. | Ding, Li | Niu, Beifang | Ally, Adrian | Balasundaram, Miruna | Birol, Inanc | Bowlby, Reanne | Brooks, Denise | Butterfield, Yaron S. N. | Carlsen, Rebecca | Chu, Andy | Chu, Justin | Chuah, Eric | Chun, Hye-Jung E. | Clarke, Amanda | Dhalla, Noreen | Guin, Ranabir | Holt, Robert A. | Jones, Steven J.M. | Kasaian, Katayoon | Lee, Darlene | Li, Haiyan A. | Lim, Emilia | Ma, Yussanne | Marra, Marco A. | Mayo, Michael | Moore, Richard A. | Mungall, Andrew J. | Mungall, Karen L. | Nip, Ka Ming | Robertson, A. Gordon | Schein, Jacqueline E. | Sipahimalani, Payal | Tam, Angela | Thiessen, Nina | Beroukhim, Rameen | Carter, Scott L. | Cherniack, Andrew D. | Cho, Juok | Cibulskis, Kristian | DiCara, Daniel | Frazer, Scott | Fisher, Sheila | Gabriel, Stacey B. | Gehlenborg, Nils | Heiman, David I. | Jung, Joonil | Kim, Jaegil | Lander, Eric S. | Lawrence, Michael S. | Lichtenstein, Lee | Lin, Pei | Meyerson, Matthew | Ojesina, Akinyemi I. | Pedamallu, Chandra Sekhar | Saksena, Gordon | Schumacher, Steven E. | Sougnez, Carrie | Stojanov, Petar | Tabak, Barbara | Taylor-Weiner, Amaro | Voet, Doug | Rosenberg, Mara | Zack, Travis I. | Zhang, Hailei | Zou, Lihua | Protopopov, Alexei | Santoso, Netty | Parfenov, Michael | Lee, Semin | Zhang, Jianhua | Mahadeshwar, Harshad S. | Tang, Jiabin | Ren, Xiaojia | Seth, Sahil | Yang, Lixing | Xu, Andrew W. | Song, Xingzhi | Pantazi, Angeliki | Xi, Ruibin | Bristow, Christopher A. | Hadjipanayis, Angela | Seidman, Jonathan | Chin, Lynda | Park, Peter J. | Kucherlapati, Raju | Akbani, Rehan | Ling, Shiyun | Liu, Wenbin | Rao, Arvind | Weinstein, John N. | Kim, Sang-Bae | Lee, Ju-Seog | Lu, Yiling | Mills, Gordon | Laird, Peter W. | Hinoue, Toshinori | Weisenberger, Daniel J. | Bootwalla, Moiz S. | Lai, Phillip H. | Shen, Hui | Triche, Timothy | Van Den Berg, David J. | Baylin, Stephen B. | Herman, James G. | Getz, Gad | Chin, Lynda | Liu, Yingchun | Murray, Bradley A. | Noble, Michael S. | Askoy, B. Arman | Ciriello, Giovanni | Dresdner, Gideon | Gao, Jianjiong | Gross, Benjamin | Jacobsen, Anders | Lee, William | Ramirez, Ricardo | Sander, Chris | Schultz, Nikolaus | Senbabaoglu, Yasin | Sinha, Rileen | Sumer, S. Onur | Sun, Yichao | Weinhold, Nils | Thorsson, Vésteinn | Bernard, Brady | Iype, Lisa | Kramer, Roger W. | Kreisberg, Richard | Miller, Michael | Reynolds, Sheila M. | Rovira, Hector | Tasman, Natalie | Shmulevich, Ilya | Ng, Santa Cruz Sam | Haussler, David | Stuart, Josh M. | Akbani, Rehan | Ling, Shiyun | Liu, Wenbin | Rao, Arvind | Weinstein, John N. | Verhaak, Roeland G.W. | Mills, Gordon B. | Leiserson, Mark D. M. | Raphael, Benjamin J. | Wu, Hsin-Ta | Taylor, Barry S. | Black, Aaron D. | Bowen, Jay | Carney, Julie Ann | Gastier-Foster, Julie M. | Helsel, Carmen | Leraas, Kristen M. | Lichtenberg, Tara M. | McAllister, Cynthia | Ramirez, Nilsa C. | Tabler, Teresa R. | Wise, Lisa | Zmuda, Erik | Penny, Robert | Crain, Daniel | Gardner, Johanna | Lau, Kevin | Curely, Erin | Mallery, David | Morris, Scott | Paulauskis, Joseph | Shelton, Troy | Shelton, Candace | Sherman, Mark | Benz, Christopher | Lee, Jae-Hyuk | Fedosenko, Konstantin | Manikhas, Georgy | Potapova, Olga | Voronina, Olga | Belyaev, Smitry | Dolzhansky, Oleg | Rathmell, W. Kimryn | Brzezinski, Jakub | Ibbs, Matthew | Korski, Konstanty | Kycler, Witold | ŁaŸniak, Radoslaw | Leporowska, Ewa | Mackiewicz, Andrzej | Murawa, Dawid | Murawa, Pawel | Spychała, Arkadiusz | Suchorska, Wiktoria M. | Tatka, Honorata | Teresiak, Marek | Wiznerowicz, Maciej | Abdel-Misih, Raafat | Bennett, Joseph | Brown, Jennifer | Iacocca, Mary | Rabeno, Brenda | Kwon, Sun-Young | Penny, Robert | Gardner, Johanna | Kemkes, Ariane | Mallery, David | Morris, Scott | Shelton, Troy | Shelton, Candace | Curley, Erin | Alexopoulou, Iakovina | Engel, Jay | Bartlett, John | Albert, Monique | Park, Do-Youn | Dhir, Rajiv | Luketich, James | Landreneau, Rodney | Janjigian, Yelena Y. | Kelsen, David P. | Cho, Eunjung | Ladanyi, Marc | Tang, Laura | McCall, Shannon J. | Park, Young S. | Cheong, Jae-Ho | Ajani, Jaffer | Camargo, M. Constanza | Alonso, Shelley | Ayala, Brenda | Jensen, Mark A. | Pihl, Todd | Raman, Rohini | Walton, Jessica | Wan, Yunhu | Demchok, John A. | Eley, Greg | Mills Shaw, Kenna R. | Sheth, Margi | Tarnuzzer, Roy | Wang, Zhining | Yang, Liming | Zenklusen, Jean Claude | Davidsen, Tanja | Hutter, Carolyn M. | Sofia, Heidi J. | Burton, Robert | Chudamani, Sudha | Liu, Jia
Nature  2014;513(7517):202-209.
Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein–Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also knownasPD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies.
doi:10.1038/nature13480
PMCID: PMC4170219  PMID: 25079317
6.  Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity 
Oncotarget  2014;5(17):7960-7979.
The majority of oligodendrogliomas (ODGs) exhibit combined losses of chromosomes 1p and 19q and mutations of isocitrate dehydrogenase (IDH1-R132H or IDH2-R172K). Approximately 70% of ODGs with 1p19q co-deletions harbor somatic mutations in the Capicua Transcriptional Repressor (CIC) gene on chromosome 19q13.2. Here we show that endogenous long (CIC-L) and short (CIC-S) CIC proteins are predominantly localized to the nucleus or cytoplasm, respectively. Cytoplasmic CIC-S is found in close proximity to the mitochondria. To study wild type and mutant CIC function and motivated by the paucity of 1p19q co-deleted ODG lines, we created HEK293 and HOG stable cell lines ectopically co-expressing CIC and IDH1. Non-mutant lines displayed increased clonogenicity, but cells co-expressing the mutant IDH1-R132H with either CIC-S-R201W or -R1515H showed reduced clonogenicity in an additive manner, demonstrating cooperative effects in our assays. Expression of mutant CIC-R1515H increased cellular 2-Hydroxyglutarate (2HG) levels compared to wild type CIC in IDH1-R132H background. Levels of phosphorylated ATP-citrate Lyase (ACLY) were lower in cell lines expressing mutant CIC-S proteins compared to cells expressing wild type CIC-S, supporting a cytosolic citrate metabolism-related mechanism of reduced clonogenicity in our in vitro model systems. ACLY or phospho-ACLY were similarly reduced in CIC-mutant 1p19q co-deleted oligodendroglioma patient samples.
PMCID: PMC4202173  PMID: 25277207
CIC; IDH1; ACLY; citrate; 2HG; Oligodendroglioma
7.  Desmosterolosis: an illustration of diagnostic ambiguity of cholesterol synthesis disorders 
Desmosterolosis is an autosomal recessive disorder of cholesterol biosynthesis caused by biallelic mutations of DHCR24 (homozygous or compound heterozygous), which encodes 3-β-hydroxysterol Δ-24-reductase. We report two sisters homozygous for the 571G>A (E191K) DHCR24 mutation. Comparison of the propositae to other reported individuals shows that psychomotor developmental delay, failure to thrive, dysgenesis of the corpus callosum, cerebral white matter atrophy and spasticity likely constitute the minimal desmosterolosis phenotype. The nonspecific features of desmosterolosis make it difficult to suspect clinically and therefore screening for it should be entertained early in the diagnostic evaluation.
doi:10.1186/1750-1172-9-94
PMCID: PMC4076431  PMID: 24961299
DHCR24; Desmosterol; Intellectual disability; Cholesterol biosynthesis; Exome sequencing
8.  Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters 
Nature  2010;466(7303):253-257.
While the methylation of DNA in 5′ promoters suppresses gene expression, the role of DNA methylation in gene bodies is unclear1–5. In mammals, tissue- and cell type-specific methylation is present in a small percentage of 5′ CpG island (CGI) promoters, while a far greater proportion occurs across gene bodies, coinciding with highly conserved sequences5–10. Tissue-specific intragenic methylation might reduce,3 or, paradoxically, enhance transcription elongation efficiency1,2,4,5. Capped analysis of gene expression (CAGE) experiments also indicate that transcription commonly initiates within and between genes11–15. To investigate the role of intragenic methylation, we generated a map of DNA methylation from human brain encompassing 24.7 million of the 28 million CpG sites. From the dense, high-resolution coverage of CpG islands, the majority of methylated CpG islands were revealed to be in intragenic and intergenic regions, while less than 3% of CpG islands in 5′ promoters were methylated. The CpG islands in all three locations overlapped with RNA markers of transcription initiation, and unmethylated CpG islands also overlapped significantly with trimethylation of H3K4, a histone modification enriched at promoters16. The general and CpG-island-specific patterns of methylation are conserved in mouse tissues. An in-depth investigation of the human SHANK3 locus17,18 and its mouse homologue demonstrated that this tissue-specific DNA methylation regulates intragenic promoter activity in vitro and in vivo. These methylation-regulated, alternative transcripts are expressed in a tissue and cell type-specific manner, and are expressed differentially within a single cell type from distinct brain regions. These results support a major role for intragenic methylation in regulating cell context-specific alternative promoters in gene bodies.
doi:10.1038/nature09165
PMCID: PMC3998662  PMID: 20613842
Intragenic DNA methylation; alternate promoters; comparative epigenomics; SHANK3
9.  Mutational Analysis Reveals the Origin and Therapy-driven Evolution of Recurrent Glioma 
Science (New York, N.Y.)  2013;343(6167):189-193.
Tumor recurrence is a leading cause of cancer mortality. Therapies for recurrent disease may fail, at least in part, because the genomic alterations driving the growth of recurrences are distinct from those in the initial tumor. To explore this hypothesis, we sequenced the exomes of 23 initial low-grade gliomas and recurrent tumors resected from the same patients. In 43% of cases, at least half of the mutations in the initial tumor were undetected at recurrence, including driver mutations in TP53, ATRX, SMARCA4, and BRAF, suggesting recurrent tumors are often seeded by cells derived from the initial tumor at a very early stage of their evolution. Notably, tumors from 6 of 10 patients treated with the chemotherapeutic drug temozolomide (TMZ) followed an alternative evolutionary path to high-grade glioma. At recurrence, these tumors were hypermutated and harbored driver mutations in the RB and AKT-mTOR pathways that bore the signature of TMZ-induced mutagenesis.
doi:10.1126/science.1239947
PMCID: PMC3998672  PMID: 24336570
10.  Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation 
PLoS Genetics  2014;10(4):e1004261.
Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.
Author Summary
Cryptococcus neoformans var. grubii is a major human pathogen responsible for deadly meningoencephalitis in immunocompromised patients. Here, we report the sequencing and annotation of its genome. Evidence for extensive intron splicing, antisense transcription, non-coding RNAs, and alternative polyadenylation indicates the potential for highly intricate regulation of gene expression in this opportunistic pathogen. In addition, detailed molecular, genetic, and genomic studies were performed to characterize structural features of the genome, including centromeres and origins of replication. Finally, the phenotypic and genome re-sequencing analysis of a collection of isolates of the reference H99 strain resulting from laboratory passage revealed that microevolutionary processes during in vitro culturing of pathogenic fungi can impact virulence.
doi:10.1371/journal.pgen.1004261
PMCID: PMC3990503  PMID: 24743168
11.  Subgroup Specific Alternative Splicing in Medulloblastoma 
Acta neuropathologica  2012;123(4):485-499.
Medulloblastoma is comprised of four distinct molecular variants: WNT, SHH, Group 3, and Group 4. We analyzed alternative splicing usage in 14 normal cerebellar samples and 103 medulloblastomas of known subgroup. Medulloblastoma samples have a statistically significant increase in alternative splicing as compared to normal fetal cerebella (2.3-times; P<6.47E-8). Splicing patterns are distinct and specific between molecular subgroups. Unsupervised hierarchical clustering of alternative splicing events accurately assigns medulloblastomas to their correct subgroup. Subgroup-specific splicing and alternative promoter usage was most prevalent in Group 3 (19.4%) and SHH (16.2%) medulloblastomas, while observed less frequently in WNT (3.2%), and Group 4 (9.3%) tumors. Functional annotation of alternatively spliced genes reveals over-representation of genes important for neuronal development. Alternative splicing events in medulloblastoma may be regulated in part by the correlative expression of antisense transcripts, suggesting a possible mechanism affecting subgroup specific alternative splicing. Our results identify additional candidate markers for medulloblastoma subgroup affiliation, further support the existence of distinct subgroups of the disease, and demonstrate an additional level of transcriptional heterogeneity between medulloblastoma subgroups.
doi:10.1007/s00401-012-0959-7
PMCID: PMC3984840  PMID: 22358458
medulloblastoma; alternative splicing; neuronal development; molecular subgroup; pediatric cancer
12.  A pan-BCL2 inhibitor renders bone marrow resident human leukemia stem cells sensitive to tyrosine kinase inhibition 
Cell stem cell  2013;12(3):316-328.
Summary
Leukemia stem cells (LSC) play a pivotal role in chronic myeloid leukemia (CML) tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), in part, through alternative splicing of self-renewal and survival genes. To elucidate splice isoform regulators of human BC LSC maintenance, we performed whole transcriptome RNA sequencing; splice isoform-specific qRT-PCR, nanoproteomics, stromal co-culture and BC LSC xenotransplantation analyses. Cumulatively, these studies show that alternative splicing of multiple pro-survival BCL2 family genes promotes malignant transformation of myeloid progenitors into BC LSC that are quiescent in the marrow niche and contribute to therapeutic resistance. Notably, a novel pan-BCL2 inhibitor, sabutoclax, renders marrow niche-resident BC LSC sensitive to TKIs at doses that spare normal progenitors. These findings underscore the importance of alternative BCL2 family splice isoform expression in BC LSC maintenance and suggest that combinatorial inhibition of pro-survival BCL2 family proteins and BCR-ABL may eliminate dormant LSC and obviate resistance.
doi:10.1016/j.stem.2012.12.011
PMCID: PMC3968867  PMID: 23333150
13.  Cell of origin in AML: Susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex 
Cancer cell  2011;20(1):39-52.
Summary
Pathways defining susceptibility of normal cells to oncogenic transformation may be valuable therapeutic targets. We characterized the cell of origin and its critical pathways in MN1-induced leukemias. Common myeloid (CMP), but not granulocyte-macrophage progenitors (GMP) could be transformed by MN1. Complementation studies of CMP-signature genes in GMPs demonstrated that MN1-leukemogenicity required the MEIS1/AbdB-like HOX-protein complex. ChIP-sequencing identified common target genes of MN1 and MEIS1, and demonstrated identical binding sites for a large proportion of their chromatin targets. Transcriptional repression of MEIS1 targets in established MN1 leukemias demonstrated antileukemic activity. As MN1 relies on but cannot activate expression of MEIS1/AbdB-like HOX proteins, transcriptional activity of these genes determines cellular susceptibility to MN1-induced transformation, and may represent a promising therapeutic target.
doi:10.1016/j.ccr.2011.06.020
PMCID: PMC3951989  PMID: 21741595 CAMSID: cams3759
14.  Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma 
Acta neuropathologica  2012;125(3):373-384.
Recent sequencing efforts have described the mutational landscape of the pediatric brain tumor medulloblastoma. Although MLL2 is among the most frequent somatic single nucleotide variants (SNV), the clinical and biological significance of these mutations remains uncharacterized. Through targeted re-sequencing, we identified mutations of MLL2 in 8 % (14/175) of MBs, the majority of which were loss of function. Notably, we also report mutations affecting the MLL2-binding partner KDM6A, in 4 % (7/175) of tumors. While MLL2 mutations were independent of age, gender, histological subtype, M-stage or molecular subgroup, KDM6A mutations were most commonly identified in Group 4 MBs, and were mutually exclusive with MLL2 mutations. Immunohistochemical staining for H3K4me3 and H3K27me3, the chromatin effectors of MLL2 and KDM6A activity, respectively, demonstrated alterations of the histone code in 24 % (53/220) of MBs across all subgroups. Correlating these MLL2-and KDM6A-driven histone marks with prognosis, we identified populations of MB with improved (K4+/K27−) and dismal (K4−/K27−) outcomes, observed primarily within Group 3 and 4 MBs. Group 3 and 4 MBs demonstrate somatic copy number aberrations, and transcriptional profiles that converge on modifiers of H3K27-methylation (EZH2, KDM6A, KDM6B), leading to silencing of PRC2-target genes. As PRC2-mediated aberrant methylation of H3K27 has recently been targeted for therapy in other diseases, it represents an actionable target for a substantial percentage of medulloblastoma patients with aggressive forms of the disease.
doi:10.1007/s00401-012-1070-9
PMCID: PMC3580007  PMID: 23184418
MLL2; KDM6A; Histone lysine methylation; Medulloblastoma; PRC2
15.  MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers 
Nature  2011;471(7338):377-381.
Chromosomal translocations are critically involved in the molecular pathogenesis of B-cell lymphomas, and highly recurrent and specific rearrangements have defined distinct molecular subtypes linked to unique clinicopathological features1,2. In contrast, several well-characterized lymphoma entities still lack disease-defining translocation events. To identify novel fusion transcripts resulting from translocations, we investigated two Hodgkin lymphoma cell lines by whole-transcriptome paired-end sequencing (RNA-seq). Here we show a highly expressed gene fusion involving the major histocompatibility complex (MHC) class II transactivator CIITA (MHC2TA) in KM-H2 cells. In a subsequent evaluation of 263 B-cell lymphomas, we also demonstrate that genomic CIITA breaks are highly recurrent in primary mediastinal B-cell lymphoma (38%) and classical Hodgkin lymphoma (cHL) (15%). Furthermore, we find that CIITA is a promiscuous partner of various in-frame gene fusions, and we report that CIITA gene alterations impact survival in primary mediastinal B-cell lymphoma (PMBCL). As functional consequences of CIITA gene fusions, we identify downregulation of surface HLA class II expression and overexpression of ligands of the receptor molecule programmed cell death 1 (CD274/PDL1 and CD273/PDL2). These receptor–ligand interactions have been shown to impact anti-tumour immune responses in several cancers3, whereas decreased MHC class II expression has been linked to reduced tumour cell immunogenicity4. Thus, our findings suggest that recurrent rearrangements of CIITA may represent a novel genetic mechanism underlying tumour–microenvironment interactions across a spectrum of lymphoid cancers.
doi:10.1038/nature09754
PMCID: PMC3902849  PMID: 21368758
16.  DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape 
Nature genetics  2013;45(7):10.1038/ng.2649.
Introduction
Transposable element (TE) derived sequences comprise half of our genome and DNA methylome, and are presumed densely methylated and inactive. Examination of the genome-wide DNA methylation status within 928 TE subfamilies in human embryonic and adult tissues revealed unexpected tissue-specific and subfamily-specific hypomethylation signatures. Genes proximal to tissue-specific hypomethylated TE sequences were enriched for functions important for the tissue type and their expression correlated strongly with hypomethylation of the TEs. When hypomethylated, these TE sequences gained tissue-specific enhancer marks including H3K4me1 and occupancy by p300, and a majority exhibited enhancer activity in reporter gene assays. Many such TEs also harbored binding sites for transcription factors that are important for tissue-specific functions and exhibited evidence for evolutionary selection. These data suggest that sequences derived from TEs may be responsible for wiring tissue type-specific regulatory networks, and have acquired tissue-specific epigenetic regulation.
doi:10.1038/ng.2649
PMCID: PMC3695047  PMID: 23708189
17.  The clonal and mutational evolution spectrum of primary triple negative breast cancers 
Nature  2012;486(7403):10.1038/nature10933.
Primary triple negative breast cancers (TNBC) represent approximately 16% of all breast cancers1 and are a tumour type defined by exclusion, for which comprehensive landscapes of somatic mutation have not been determined. Here we show in 104 early TNBC cases, that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some exhibiting only a handful of somatic aberrations in a few pathways, whereas others contain hundreds of somatic events and multiple pathways implicated. Integration with matched whole transcriptome sequence data revealed that only ~36% of mutations are expressed. By examining single nucleotide variant (SNV) allelic abundance derived from deep re-sequencing (median >20,000 fold) measurements in 2414 somatic mutations, we determine for the first time in an epithelial tumour, the relative abundance of clonal genotypes among cases in the population. We show that TNBC vary widely and continuously in their clonal frequencies at the time of diagnosis, with basal subtype TNBC2,3 exhibiting more variation than non-basal TNBC. Although p53 and PIK3CA/PTEN somatic mutations appear clonally dominant compared with other pathways, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal and cell shape/motility proteins occurred at lower clonal frequencies, suggesting they occurred later during tumour progression. Taken together our results show that future attempts to dissect the biology and therapeutic responses of TNBC will require the determination of individual tumour clonal genotypes.
doi:10.1038/nature10933
PMCID: PMC3863681  PMID: 22495314
18.  Genomic testing to determine drug response: measuring preferences of the public and patients using Discrete Choice Experiment (DCE) 
Background
The extent to which a genomic test will be used in practice is affected by factors such as ability of the test to correctly predict response to treatment (i.e. sensitivity and specificity of the test), invasiveness of the testing procedure, test cost, and the probability and severity of side effects associated with treatment.
Methods
Using discrete choice experimentation (DCE), we elicited preferences of the public (Sample 1, N = 533 and Sample 2, N = 525) and cancer patients (Sample 3, N = 38) for different attributes of a hypothetical genomic test for guiding cancer treatment. Samples 1 and 3 considered the test/treatment in the context of an aggressive curable cancer (scenario A) while the scenario for sample 2 was based on a non-aggressive incurable cancer (scenario B).
Results
In aggressive curable cancer (scenario A), everything else being equal, the odds ratio (OR) of choosing a test with 95% sensitivity was 1.41 (versus a test with 50% sensitivity) and willingness to pay (WTP) was $1331, on average, for this amount of improvement in test sensitivity. In this scenario, the OR of choosing a test with 95% specificity was 1.24 times that of a test with 50% specificity (WTP = $827). In non-aggressive incurable cancer (scenario B), the OR of choosing a test with 95% sensitivity was 1.65 (WTP = $1344), and the OR of choosing a test with 95% specificity was 1.50 (WTP = $1080). Reducing severity of treatment side effects from severe to mild was associated with large ORs in both scenarios (OR = 2.10 and 2.24 in scenario A and B, respectively). In contrast, patients had a very large preference for 95% sensitivity of the test (OR = 5.23).
Conclusion
The type and prognosis of cancer affected preferences for genomically-guided treatment. In aggressive curable cancer, individuals emphasized more on the sensitivity rather than the specificity of the test. In contrast, for a non-aggressive incurable cancer, individuals put similar emphasis on sensitivity and specificity of the test. While the public expressed strong preference toward lowering severity of side effects, improving sensitivity of the test had by far the largest influence on patients’ decision to use genomic testing.
doi:10.1186/1472-6963-13-454
PMCID: PMC3827922  PMID: 24176050
Pharmacogenomics; Genomic medicine; Personalized medicine; Genetic testing; Discrete choice experiment; Conjoint analysis; Preference elicitation; Cancer treatment
19.  Integrated genome and transcriptome sequencing identifies a novel form of hybrid and aggressive prostate cancer† 
The Journal of pathology  2012;227(1):53-61.
Next-generation sequencing is making sequence-based molecular pathology and personalized oncology viable. We selected an individual initially diagnosed with conventional but aggressive prostate adenocarcinoma and sequenced the genome and transcriptome from primary and metastatic tissues collected prior to hormone therapy. The histology-pathology and copy number profiles were remarkably homogeneous, yet it was possible to propose the quadrant of the prostate tumour that likely seeded the metastatic diaspora. Despite a homogeneous cell type, our transcriptome analysis revealed signatures of both luminal and neuroendocrine cell types. Remarkably, the repertoire of expressed but apparently private gene fusions, including C15orf21:MYC, recapitulated this biology. We hypothesize that the amplification and over-expression of the stem cell gene MSI2 may have contributed to the stable hybrid cellular identity. This hybrid luminal-neuroendocrine tumour appears to represent a novel and highly aggressive case of prostate cancer with unique biological features and, conceivably, a propensity for rapid progression to castrate-resistance. Overall, this work highlights the importance of integrated analyses of genome, exome and transcriptome sequences for basic tumour biology, sequence-based molecular pathology and personalized oncology.
doi:10.1002/path.3987
PMCID: PMC3768138  PMID: 22294438
RNA sequencing; DNA sequencing; prostate cancer; fusion genes; neuroendocrine; personalized medicine; cancer genetics
20.  The genetic landscape of high-risk neuroblastoma 
Nature genetics  2013;45(3):279-284.
Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%1. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 cases using a combination of whole exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per megabase (0.48 non-silent), and remarkably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, an additional 7.1% had focal deletions), MYCN (1.7%, a recurrent p.Pro44Leu alteration), and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1, and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies reliant upon frequently altered oncogenic drivers.
doi:10.1038/ng.2529
PMCID: PMC3682833  PMID: 23334666
21.  Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia 
Cancer cell  2012;22(2):153-166.
SUMMARY
Genomic profiling has identified a subtype of high-risk B-progenitor acute lymphoblastic leukemia (B-ALL) with alteration of IKZF1, a gene expression profile similar to BCR-ABL1-positive ALL and poor outcome (Ph-like ALL). The genetic alterations that activate kinase signaling in Ph-like ALL are poorly understood. We performed transcriptome and whole genome sequencing on 15 cases of Ph-like ALL, and identified rearrangements involving ABL1, JAK2, PDGFRB, CRLF2 and EPOR, activating mutations of IL7R and FLT3, and deletion of SH2B3, which encodes the JAK2 negative regulator LNK. Importantly, several of these alterations induce transformation that is attenuated with tyrosine kinase inhibitors, suggesting the treatment outcome of these patients may be improved with targeted therapy.
doi:10.1016/j.ccr.2012.06.005
PMCID: PMC3422513  PMID: 22897847
22.  BreakFusion: targeted assembly-based identification of gene fusions in whole transcriptome paired-end sequencing data 
Bioinformatics  2012;28(14):1923-1924.
Summary: Despite recent progress, computational tools that identify gene fusions from next-generation whole transcriptome sequencing data are often limited in accuracy and scalability. Here, we present a software package, BreakFusion that combines the strength of reference alignment followed by read-pair analysis and de novo assembly to achieve a good balance in sensitivity, specificity and computational efficiency.
Availability: http://bioinformatics.mdanderson.org/main/BreakFusion
Contact: kchen3@mdanderson.org; lding@genome.wustl.edu
Supplementary information: Supplementary data are available at Bioinformatics online
doi:10.1093/bioinformatics/bts272
PMCID: PMC3389765  PMID: 22563071
23.  Next Generation Sequencing of Prostate Cancer from a Patient Identifies a Deficiency of Methylthioadenosine Phosphorylase (MTAP), an Exploitable Tumor Target 
Molecular cancer therapeutics  2012;11(3):775-783.
Castrate resistant prostate cancer (CRPC) and neuroendocrine carcinoma of the prostate are invariably fatal diseases for which only palliative therapies exist. As part of a prostate tumour sequencing program, a patient tumour was analyzed using Illumina genome sequencing and a matched renal capsule tumour xenograft was generated. Both tumour and xenograft had a homozygous 9p21 deletion spanning the MTAP, CDKN2 and ARF genes. It is rare for this deletion to occur in primary prostate tumours yet approximately 10% express decreased levels of MTAP mRNA. Decreased MTAP expression is a prognosticator for poor outcome. Moreover, it appears that this deletion is more common in CRPC than in primary prostate cancer. We show for the first time that treatment with methylthioadenosine and high dose 6-thioguanine causes marked inhibition of a patient derived neuroendocrine xenograft growth while protecting the host from 6-thioguanine toxicity. This therapeutic approach can be applied to other MTAP-deficient human cancers since deletion or hypermethylation of the MTAP gene occurs in a broad spectrum of tumours at high frequency. The combination of genome sequencing and patient-derived xenografts can identify candidate therapeutic agents and evaluate them for personalized oncology.
doi:10.1158/1535-7163.MCT-11-0826
PMCID: PMC3691697  PMID: 22252602
massively parallel sequencing; MTAP; patient-derived xenograft; genitourinary cancers: prostate; animal models of cancer; gene expression profiling; functional genomics; xenograft models
24.  Subgroup specific structural variation across 1,000 medulloblastoma genomes 
Northcott, Paul A | Shih, David JH | Peacock, John | Garzia, Livia | Morrissy, Sorana | Zichner, Thomas | Stütz, Adrian M | Korshunov, Andrey | Reimand, Juri | Schumacher, Steven E | Beroukhim, Rameen | Ellison, David W | Marshall, Christian R | Lionel, Anath C | Mack, Stephen | Dubuc, Adrian | Yao, Yuan | Ramaswamy, Vijay | Luu, Betty | Rolider, Adi | Cavalli, Florence | Wang, Xin | Remke, Marc | Wu, Xiaochong | Chiu, Readman YB | Chu, Andy | Chuah, Eric | Corbett, Richard D | Hoad, Gemma R | Jackman, Shaun D | Li, Yisu | Lo, Allan | Mungall, Karen L | Nip, Ka Ming | Qian, Jenny Q | Raymond, Anthony GJ | Thiessen, Nina | Varhol, Richard J | Birol, Inanc | Moore, Richard A | Mungall, Andrew J | Holt, Robert | Kawauchi, Daisuke | Roussel, Martine F | Kool, Marcel | Jones, David TW | Witt, Hendrick | Fernandez-L, Africa | Kenney, Anna M | Wechsler-Reya, Robert J | Dirks, Peter | Aviv, Tzvi | Grajkowska, Wieslawa A | Perek-Polnik, Marta | Haberler, Christine C | Delattre, Olivier | Reynaud, Stéphanie S | Doz, François F | Pernet-Fattet, Sarah S | Cho, Byung-Kyu | Kim, Seung-Ki | Wang, Kyu-Chang | Scheurlen, Wolfram | Eberhart, Charles G | Fèvre-Montange, Michelle | Jouvet, Anne | Pollack, Ian F | Fan, Xing | Muraszko, Karin M | Gillespie, G. Yancey | Di Rocco, Concezio | Massimi, Luca | Michiels, Erna MC | Kloosterhof, Nanne K | French, Pim J | Kros, Johan M | Olson, James M | Ellenbogen, Richard G | Zitterbart, Karel | Kren, Leos | Thompson, Reid C | Cooper, Michael K | Lach, Boleslaw | McLendon, Roger E | Bigner, Darell D | Fontebasso, Adam | Albrecht, Steffen | Jabado, Nada | Lindsey, Janet C | Bailey, Simon | Gupta, Nalin | Weiss, William A | Bognár, László | Klekner, Almos | Van Meter, Timothy E | Kumabe, Toshihiro | Tominaga, Teiji | Elbabaa, Samer K | Leonard, Jeffrey R | Rubin, Joshua B | Liau, Linda M | Van Meir, Erwin G | Fouladi, Maryam | Nakamura, Hideo | Cinalli, Giuseppe | Garami, Miklós | Hauser, Peter | Saad, Ali G | Iolascon, Achille | Jung, Shin | Carlotti, Carlos G | Vibhakar, Rajeev | Ra, Young Shin | Robinson, Shenandoah | Zollo, Massimo | Faria, Claudia C | Chan, Jennifer A | Levy, Michael L | Sorensen, Poul HB | Meyerson, Matthew | Pomeroy, Scott L | Cho, Yoon-Jae | Bader, Gary D | Tabori, Uri | Hawkins, Cynthia E | Bouffet, Eric | Scherer, Stephen W | Rutka, James T | Malkin, David | Clifford, Steven C | Jones, Steven JM | Korbel, Jan O | Pfister, Stefan M | Marra, Marco A | Taylor, Michael D
Nature  2012;488(7409):49-56.
Summary
Medulloblastoma, the most common malignant pediatric brain tumour, is currently treated with non-specific cytotoxic therapies including surgery, whole brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, prior attempts to identify targets for therapy have been underpowered due to small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup enriched. The most common region of focal copy number gain is a tandem duplication of the Parkinson’s disease gene SNCAIP, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1 that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGFβ signaling in Group 3, and NF-κB signaling in Group 4 suggest future avenues for rational, targeted therapy.
doi:10.1038/nature11327
PMCID: PMC3683624  PMID: 22832581
25.  Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression 
Human Molecular Genetics  2012;21(11):2572-2587.
Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila and mouse models, we show that the proteins encoded by SMARCAL1 orthologs localize to transcriptionally active chromatin and modulate gene expression. We also show that, as found in SIOD patients, deficiency of the SMARCAL1 orthologs alone is insufficient to cause disease in fruit flies and mice, although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD.
doi:10.1093/hmg/dds083
PMCID: PMC3349428  PMID: 22378147

Results 1-25 (102)