PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
1.  Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase 
Nature  2014;518(7537):120-124.
Biotin-dependent carboxylases are widely distributed in nature and have important functions in the metabolism of fatty acids, amino acids, carbohydrates, cholesterol and other compounds 1–6. Defective mutations in several of these enzymes have been linked to serious metabolic diseases in humans, and acetyl-CoA carboxylase (ACC) is a target for drug discovery against diabetes, cancer and other diseases 7–9. We report here the identification and biochemical, structural and functional characterizations of a novel single-chain (120 kD), multi-domain biotin-dependent carboxylase in bacteria. It has preference for long-chain acyl-CoA substrates, although it is also active toward short- and medium-chain acyl-CoAs, and we have named it long-chain acyl-CoA carboxylase (LCC). The holoenzyme is a homo-hexamer with molecular weight of 720 kD. The 3.0 Å crystal structure of Mycobacterium avium subspecies paratuberculosis LCC (MapLCC) holoenzyme revealed an architecture that is strikingly different compared to those of related biotin-dependent carboxylases 10,11. In addition, the domains of each monomer have no direct contacts with each other. They are instead extensively swapped in the holoenzyme, such that one cycle of catalysis involves the participation of four monomers. Functional studies in Pseudomonas aeruginosa suggest that the enzyme is involved in the utilization of selected carbon and nitrogen sources.
doi:10.1038/nature13912
PMCID: PMC4319993  PMID: 25383525
2.  An Aerobic Exercise: Defining the Roles of Pseudomonas aeruginosa Terminal Oxidases 
Journal of Bacteriology  2014;196(24):4203-4205.
The opportunistic pathogen Pseudomonas aeruginosa encodes a large and diverse complement of aerobic terminal oxidases, which is thought to contribute to its ability to thrive in settings with low oxygen availability. In this issue, Arai et al. (J. Bacteriol. 196:4206–4215, 2014, doi:http://dx.doi.org/10.1128/JB.02176-14) present a thorough characterization of these five complexes, enabling a more detailed understanding of aerobic respiration in this organism.
doi:10.1128/JB.02336-14
PMCID: PMC4248855  PMID: 25266389
3.  A growing molecular toolbox for the functional analysis of microRNAs in Caenorhabditis elegans 
Briefings in Functional Genomics  2011;10(4):175-180.
With the growing number of microRNAs (miRNAs) being identified each year, more innovative molecular tools are required to efficiently characterize these small RNAs in living animal systems. Caenorhabditis elegans is a powerful model to study how miRNAs regulate gene expression and control diverse biological processes during development and in the adult. Genetic strategies such as large-scale miRNA deletion studies in nematodes have been used with limited success since the majority of miRNA genes do not exhibit phenotypes when individually mutated. Recent work has indicated that miRNAs function in complex regulatory networks with other small RNAs and protein-coding genes, and therefore the challenge will be to uncover these functional redundancies. The use of miRNA inhibitors such as synthetic antisense 2′-O-methyl oligoribonucleotides is emerging as a promising in vivo approach to dissect out the intricacies of miRNA regulation.
doi:10.1093/bfgp/elr012
PMCID: PMC3144738  PMID: 21624898
microRNA; Caenorhabditis elegans; miRNA inhibitors; antisense 2′-O-methyl oligoribonucleotides

Results 1-3 (3)