PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Protection against De Novo Methylation Is Instrumental in Maintaining Parent-of-Origin Methylation Inherited from the Gametes 
Molecular Cell  2012;47(6):909-920.
Summary
Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life.
Graphical Abstract
Highlights
► Lifelong maintenance of parent-specific methylation marks is rare in mammals ► De novo methylation acts as a major leveling factor of parent-inherited differences ► Imprinted methylation marks can exist in a tissue-specific manner ► It is very likely that very few new imprinted loci remain to be discovered
doi:10.1016/j.molcel.2012.07.010
PMCID: PMC3778900  PMID: 22902559
2.  Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation 
The Journal of Cell Biology  2008;182(2):263-276.
Chromosome synapsis during zygotene is a prerequisite for the timely homologous recombinational repair of meiotic DNA double-strand breaks (DSBs). Unrepaired DSBs are thought to trigger apoptosis during midpachytene of male meiosis if synapsis fails. An early pachytene response to asynapsis is meiotic silencing of unsynapsed chromatin (MSUC), which, in normal males, silences the X and Y chromosomes (meiotic sex chromosome inactivation [MSCI]). In this study, we show that MSUC occurs in Spo11-null mouse spermatocytes with extensive asynapsis but lacking meiotic DSBs. In contrast, three mutants (Dnmt3l, Msh5, and Dmc1) with high levels of asynapsis and numerous persistent unrepaired DSBs have a severely impaired MSUC response. We suggest that MSUC-related proteins, including the MSUC initiator BRCA1, are sequestered at unrepaired DSBs. All four mutants fail to silence the X and Y chromosomes (MSCI failure), which is sufficient to explain the midpachytene apoptosis. Apoptosis does not occur in mice with a single additional asynapsed chromosome with unrepaired meiotic DSBs and no disturbance of MSCI.
doi:10.1083/jcb.200710195
PMCID: PMC2483523  PMID: 18663141
3.  Allele-specific demethylation at an imprinted mammalian promoter 
Nucleic Acids Research  2007;35(20):7031-7039.
A screen for imprinted genes on mouse Chromosome 7 recently identified Inpp5f_v2, a paternally expressed retrogene lying within an intron of Inpp5f. Here, we identify a novel paternally expressed variant of the Inpp5f gene (Inpp5f_v3) that shows a number of unusual features. Inpp5f_v3 initiates from a CpG-rich repeat region adjoining two B1 elements, despite previous reports that SINEs are generally excluded from imprinted promoters. Accordingly, we find that the Inpp5f_v3 promoter acquires methylation around the time of implantation, when many repeat families undergo de novo epigenetic silencing. Methylation is then lost specifically on the paternally derived allele during the latter stages of embryonic development, resulting in imprinted transcriptional activation on the demethylated allele. Methylation analyses in embryos lacking maternal methylation imprints suggest that the primary imprinting mark resides within an intronic CpG island ∼1 kb downstream of the Inpp5f_v3 transcriptional start site. These data support the hypothesis that SINEs can influence gene expression by attracting de novo methylation during development, a property likely to explain their exclusion from other imprinted promoters.
doi:10.1093/nar/gkm742
PMCID: PMC2175309  PMID: 17942418
4.  Loss of spermatogonia and wide-spread DNA methylation defects in newborn male mice deficient in DNMT3L 
Background
Formation of haploid spermatozoa capable of fertilization requires proper programming of epigenetic information. Exactly how DNMT3L (DNA methyltransferase 3-Like), a postulated regulator of DNA methyltransferase activity, contributes to DNA methylation pattern acquisition during gametogenesis remains unclear. Here we report on the role of DNMT3L in male germ cell development.
Results
A developmental study covering the first 12 days following birth was conducted on a Dnmt3L mutant mouse model; lower germ cell numbers and delayed entry into meiosis were observed in Dnmt3L-/- males, pointing to a mitotic defect. A temporal expression study showed that expression of Dnmt3L is highest in prenatal gonocytes but is also detected and developmentally regulated during spermatogenesis. Using a restriction enzyme qPCR assay (qAMP), DNA methylation analyses were conducted on postnatal primitive type A spermatogonia lacking DNMT3L. Methylation levels along 61 sites across chromosomes 4 and X decreased significantly by approximately 50% compared to the levels observed in Dnmt3L+/+ germ cells, suggesting that many loci throughout the genome are marked for methylation by DNMT3L. More so, hypomethylation was more pronounced in regions of lower GC content than in regions of higher GC content.
Conclusion
Taken together, these data suggest that DNMT3L plays a more global role in genomic methylation patterning than previously believed.
doi:10.1186/1471-213X-7-104
PMCID: PMC2212652  PMID: 17875220
5.  Coordinate regulation of DNA methyltransferase expression during oogenesis 
Background
Normal mammalian development requires the action of DNA methyltransferases (DNMTs) for the establishment and maintenance of DNA methylation within repeat elements and imprinted genes. Here we report the expression dynamics of Dnmt3a and Dnmt3b, as well as a regulator of DNA methylation, Dnmt3L, in isolated female germ cells.
Results
Our results indicate that these enzymes are coordinately regulated and that their expression peaks during the stage of postnatal oocyte development when maternal methylation imprints are established. We find that Dnmt3a, Dnmt3b, Dnmt3L and Dnmt1o transcript accumulation is related to oocyte diameter. Furthermore, DNMT3L deficient 15 dpp oocytes have aberrantly methylated Snrpn, Peg3 and Igf2r DMRs, but normal IAP and LINE-1 methylation levels, thereby highlighting a male germ cell specific role for DNMT3L in the establishment of DNA methylation at repeat elements. Finally, real-time RT-PCR analysis indicates that the depletion of either DNMT3L or DNMT1o in growing oocytes results in the increased expression of the de novo methyltransferase Dnmt3b, suggesting a potential compensation mechanism by this enzyme for the loss of one of the other DNA methyltransferases.
Conclusion
Together these results provide a better understanding of the developmental regulation of Dnmt3a, Dnmt3b and Dnmt3L at the time of de novo methylation during oogenesis and demonstrate that the involvement of DNMT3L in retrotransposon silencing is restricted to the male germ line. This in turn suggests the existence of other factors in the oocyte that direct DNA methylation to transposons.
doi:10.1186/1471-213X-7-36
PMCID: PMC1878483  PMID: 17445268

Results 1-5 (5)