PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Protection against De Novo Methylation Is Instrumental in Maintaining Parent-of-Origin Methylation Inherited from the Gametes 
Molecular Cell  2012;47(6):909-920.
Summary
Identifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.e. maternally imprinted loci. Transient and imprinted maternal germline DMRs (gDMRs) are indistinguishable in gametes and preimplantation embryos, however, de novo methylation of paternal alleles at implantation delineates their fates and acts as a major leveling factor of parent-inherited differences. We characterize two new imprinted gDMRs, at the Cdh15 and AK008011 loci, with tissue-specific imprinting loss, again by paternal methylation gain. Protection against demethylation after fertilization has been emphasized as instrumental in maintaining parent-of-origin methylation inherited from the gametes. Here we provide evidence that protection against de novo methylation acts as an equal major pivot, at implantation and throughout life.
Graphical Abstract
Highlights
► Lifelong maintenance of parent-specific methylation marks is rare in mammals ► De novo methylation acts as a major leveling factor of parent-inherited differences ► Imprinted methylation marks can exist in a tissue-specific manner ► It is very likely that very few new imprinted loci remain to be discovered
doi:10.1016/j.molcel.2012.07.010
PMCID: PMC3778900  PMID: 22902559
2.  Identification and resolution of artifacts in the interpretation of imprinted gene expression 
Briefings in Functional Genomics  2010;9(5-6):374-384.
Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression.
doi:10.1093/bfgp/elq020
PMCID: PMC3080772  PMID: 20829207
genomic imprinting; DNA methylation; monoallelic expression; germline; placenta
3.  The Parental Non-Equivalence of Imprinting Control Regions during Mammalian Development and Evolution 
PLoS Genetics  2010;6(11):e1001214.
In mammals, imprinted gene expression results from the sex-specific methylation of imprinted control regions (ICRs) in the parental germlines. Imprinting is linked to therian reproduction, that is, the placenta and imprinting emerged at roughly the same time and potentially co-evolved. We assessed the transcriptome-wide and ontology effect of maternally versus paternally methylated ICRs at the developmental stage of setting of the chorioallantoic placenta in the mouse (8.5dpc), using two models of imprinting deficiency including completely imprint-free embryos. Paternal and maternal imprints have a similar quantitative impact on the embryonic transcriptome. However, transcriptional effects of maternal ICRs are qualitatively focused on the fetal-maternal interface, while paternal ICRs weakly affect non-convergent biological processes, with little consequence for viability at 8.5dpc. Moreover, genes regulated by maternal ICRs indirectly influence genes regulated by paternal ICRs, while the reverse is not observed. The functional dominance of maternal imprints over early embryonic development is potentially linked to selection pressures favoring methylation-dependent control of maternal over paternal ICRs. We previously hypothesized that the different methylation histories of ICRs in the maternal versus the paternal germlines may have put paternal ICRs under higher mutational pressure to lose CpGs by deamination. Using comparative genomics of 17 extant mammalian species, we show here that, while ICRs in general have been constrained to maintain more CpGs than non-imprinted sequences, the rate of CpG loss at paternal ICRs has indeed been higher than at maternal ICRs during evolution. In fact, maternal ICRs, which have the characteristics of CpG-rich promoters, have gained CpGs compared to non-imprinted CpG-rich promoters. Thus, the numerical and, during early embryonic development, functional dominance of maternal ICRs can be explained as the consequence of two orthogonal evolutionary forces: pressure to tightly regulate genes affecting the fetal-maternal interface and pressure to avoid the mutagenic environment of the paternal germline.
Author Summary
In mammals, a subset of genes is expressed from only one chromosomal copy, depending on its parental origin. This process, known as genomic imprinting, results from DNA methylation marks deposited in gametes at regulatory sequences called imprinting control regions (ICRs). Most of the DNA methylation controlling imprinting is established in the oocyte, while very few ICRs are methylated in the sperm. We provided insight into the impact and origins of the parental imbalance in genomic imprinting control. We defined the transcriptome-wide effect of imprinting, during the transition period when the embryo becomes dependent upon maternal resources. We found that maternal ICRs have a vital effect on developmental pathways related to the mother-to-fetus exchanges, while paternal ICRs have a dispersed and non-significant effect at that stage. We evidenced that paternal ICRs are lost at a much faster rate than maternal ICRs during mammalian evolution, probably as a mechanistic consequence of different kinetics of the parental germlines. Our results support the notion that two independent evolutionary forces have led to the numerical and functional dominance of maternal ICRs: a selective advantage of parent-specific regulation of genes important for the fetal-maternal interface and pressure to avoid the mutagenic environment of the paternal germline.
doi:10.1371/journal.pgen.1001214
PMCID: PMC2987832  PMID: 21124941
4.  Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation 
The Journal of Cell Biology  2008;182(2):263-276.
Chromosome synapsis during zygotene is a prerequisite for the timely homologous recombinational repair of meiotic DNA double-strand breaks (DSBs). Unrepaired DSBs are thought to trigger apoptosis during midpachytene of male meiosis if synapsis fails. An early pachytene response to asynapsis is meiotic silencing of unsynapsed chromatin (MSUC), which, in normal males, silences the X and Y chromosomes (meiotic sex chromosome inactivation [MSCI]). In this study, we show that MSUC occurs in Spo11-null mouse spermatocytes with extensive asynapsis but lacking meiotic DSBs. In contrast, three mutants (Dnmt3l, Msh5, and Dmc1) with high levels of asynapsis and numerous persistent unrepaired DSBs have a severely impaired MSUC response. We suggest that MSUC-related proteins, including the MSUC initiator BRCA1, are sequestered at unrepaired DSBs. All four mutants fail to silence the X and Y chromosomes (MSCI failure), which is sufficient to explain the midpachytene apoptosis. Apoptosis does not occur in mice with a single additional asynapsed chromosome with unrepaired meiotic DSBs and no disturbance of MSCI.
doi:10.1083/jcb.200710195
PMCID: PMC2483523  PMID: 18663141
5.  Allele-specific demethylation at an imprinted mammalian promoter 
Nucleic Acids Research  2007;35(20):7031-7039.
A screen for imprinted genes on mouse Chromosome 7 recently identified Inpp5f_v2, a paternally expressed retrogene lying within an intron of Inpp5f. Here, we identify a novel paternally expressed variant of the Inpp5f gene (Inpp5f_v3) that shows a number of unusual features. Inpp5f_v3 initiates from a CpG-rich repeat region adjoining two B1 elements, despite previous reports that SINEs are generally excluded from imprinted promoters. Accordingly, we find that the Inpp5f_v3 promoter acquires methylation around the time of implantation, when many repeat families undergo de novo epigenetic silencing. Methylation is then lost specifically on the paternally derived allele during the latter stages of embryonic development, resulting in imprinted transcriptional activation on the demethylated allele. Methylation analyses in embryos lacking maternal methylation imprints suggest that the primary imprinting mark resides within an intronic CpG island ∼1 kb downstream of the Inpp5f_v3 transcriptional start site. These data support the hypothesis that SINEs can influence gene expression by attracting de novo methylation during development, a property likely to explain their exclusion from other imprinted promoters.
doi:10.1093/nar/gkm742
PMCID: PMC2175309  PMID: 17942418
6.  Loss of spermatogonia and wide-spread DNA methylation defects in newborn male mice deficient in DNMT3L 
Background
Formation of haploid spermatozoa capable of fertilization requires proper programming of epigenetic information. Exactly how DNMT3L (DNA methyltransferase 3-Like), a postulated regulator of DNA methyltransferase activity, contributes to DNA methylation pattern acquisition during gametogenesis remains unclear. Here we report on the role of DNMT3L in male germ cell development.
Results
A developmental study covering the first 12 days following birth was conducted on a Dnmt3L mutant mouse model; lower germ cell numbers and delayed entry into meiosis were observed in Dnmt3L-/- males, pointing to a mitotic defect. A temporal expression study showed that expression of Dnmt3L is highest in prenatal gonocytes but is also detected and developmentally regulated during spermatogenesis. Using a restriction enzyme qPCR assay (qAMP), DNA methylation analyses were conducted on postnatal primitive type A spermatogonia lacking DNMT3L. Methylation levels along 61 sites across chromosomes 4 and X decreased significantly by approximately 50% compared to the levels observed in Dnmt3L+/+ germ cells, suggesting that many loci throughout the genome are marked for methylation by DNMT3L. More so, hypomethylation was more pronounced in regions of lower GC content than in regions of higher GC content.
Conclusion
Taken together, these data suggest that DNMT3L plays a more global role in genomic methylation patterning than previously believed.
doi:10.1186/1471-213X-7-104
PMCID: PMC2212652  PMID: 17875220
7.  Coordinate regulation of DNA methyltransferase expression during oogenesis 
Background
Normal mammalian development requires the action of DNA methyltransferases (DNMTs) for the establishment and maintenance of DNA methylation within repeat elements and imprinted genes. Here we report the expression dynamics of Dnmt3a and Dnmt3b, as well as a regulator of DNA methylation, Dnmt3L, in isolated female germ cells.
Results
Our results indicate that these enzymes are coordinately regulated and that their expression peaks during the stage of postnatal oocyte development when maternal methylation imprints are established. We find that Dnmt3a, Dnmt3b, Dnmt3L and Dnmt1o transcript accumulation is related to oocyte diameter. Furthermore, DNMT3L deficient 15 dpp oocytes have aberrantly methylated Snrpn, Peg3 and Igf2r DMRs, but normal IAP and LINE-1 methylation levels, thereby highlighting a male germ cell specific role for DNMT3L in the establishment of DNA methylation at repeat elements. Finally, real-time RT-PCR analysis indicates that the depletion of either DNMT3L or DNMT1o in growing oocytes results in the increased expression of the de novo methyltransferase Dnmt3b, suggesting a potential compensation mechanism by this enzyme for the loss of one of the other DNA methyltransferases.
Conclusion
Together these results provide a better understanding of the developmental regulation of Dnmt3a, Dnmt3b and Dnmt3L at the time of de novo methylation during oogenesis and demonstrate that the involvement of DNMT3L in retrotransposon silencing is restricted to the male germ line. This in turn suggests the existence of other factors in the oocyte that direct DNA methylation to transposons.
doi:10.1186/1471-213X-7-36
PMCID: PMC1878483  PMID: 17445268
8.  MORC1 represses transposable elements in the mouse male germline 
Nature Communications  2014;5:5795.
The Microrchidia (Morc) family of GHKL ATPases are present in a wide variety of prokaryotic and eukaryotic organisms but are of largely unknown function. Genetic screens in Arabidopsis thaliana have identified Morc genes as important repressors of transposons and other DNA-methylated and silent genes. MORC1-deficient mice were previously found to display male-specific germ cell loss and infertility. Here we show that MORC1 is responsible for transposon repression in the male germline in a pattern that is similar to that observed for germ cells deficient for the DNA methyltransferase homologue DNMT3L. Morc1 mutants show highly localized defects in the establishment of DNA methylation at specific classes of transposons, and this is associated with failed transposon silencing at these sites. Our results identify MORC1 as an important new regulator of the epigenetic landscape of male germ cells during the period of global de novo methylation.
The Microrchidia (Morc) family of GHKL ATPases are important repressors of transposons and other DNA-methylated and silent genes in A. thaliana. Here, the authors show that MORC1 is responsible for repression and methylation of specific classes of transposons in the mouse male germline.
doi:10.1038/ncomms6795
PMCID: PMC4268658  PMID: 25503965

Results 1-8 (8)