PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (52)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  DNA methylation analysis of murine hematopoietic side population cells during aging 
Epigenetics  2013;8(10):1114-1122.
Stem cells have been found in most tissues/organs. These somatic stem cells produce replacements for lost and damaged cells, and it is not completely understood how this regenerative capacity becomes diminished during aging. To study the possible involvement of epigenetic changes in somatic stem cell aging, we used murine hematopoiesis as a model system. Hematopoietic stem cells (HSCs) were enriched for via Hoechst exclusion activity (SP-HSC) from young, medium-aged and old mice and subjected to comprehensive, global methylome (MeDIP-seq) analysis. With age, we observed a global loss of DNA methylation of approximately 5%, but an increase in methylation at some CpG islands. Just over 100 significant (FDR < 0.2) aging-specific differentially methylated regions (aDMRs) were identified, which are surprisingly few considering the profound age-based changes that occur in HSC biology. Interestingly, the polycomb repressive complex -2 (PCRC2) target genes Kiss1r, Nav2 and Hsf4 were hypermethylated with age. The promoter for the Sdpr gene was determined to be progressively hypomethylated with age. This occurred concurrently with an increase in gene expression with age. To explore this relationship further, we cultured isolated SP-HSC in the presence of 5-aza-deoxycytdine and demonstrated a negative correlation between Sdpr promoter methylation and gene expression. We report that DNA methylation patterns are well preserved during hematopoietic stem cell aging, confirm that PCRC2 targets are increasingly methylated with age, and suggest that SDPR expression changes with age in HSCs may be regulated via age-based alterations in DNA methylation.
doi:10.4161/epi.26017
PMCID: PMC3891692  PMID: 23949429
hematopoietic stem cells; aging; epigenetics; methylomics; methylome; Nano-MeDIP-seq; DNA methylation; Sdpr polycomb repressive complex -2 (PCRC2); Nav2; Kiss1r; Hsf4
2.  Age-associated epigenetic drift: implications, and a case of epigenetic thrift? 
Human Molecular Genetics  2013;22(R1):R7-R15.
It is now well established that the genomic landscape of DNA methylation (DNAm) gets altered as a function of age, a process we here call ‘epigenetic drift’. The biological, functional, clinical and evolutionary significance of this epigenetic drift, however, remains unclear. We here provide a brief review of epigenetic drift, focusing on the potential implications for ageing, stem cell biology and disease risk prediction. It has been demonstrated that epigenetic drift affects most of the genome, suggesting a global deregulation of DNAm patterns with age. A component of this drift is tissue-specific, allowing remarkably accurate age-predictive models to be constructed. Another component is tissue-independent, targeting stem cell differentiation pathways and affecting stem cells, which may explain the observed decline of stem cell function with age. Age-associated increases in DNAm target developmental genes, overlapping those associated with environmental disease risk factors and with disease itself, notably cancer. In particular, cancers and precursor cancer lesions exhibit aggravated age DNAm signatures. Epigenetic drift is also influenced by genetic factors. Thus, drift emerges as a promising biomarker for premature or biological ageing, and could potentially be used in geriatrics for disease risk prediction. Finally, we propose, in the context of human evolution, that epigenetic drift may represent a case of epigenetic thrift, or bet-hedging. In summary, this review demonstrates the growing importance of the ‘ageing epigenome’, with potentially far-reaching implications for understanding the effect of age on stem cell function and differentiation, as well as for disease prevention.
doi:10.1093/hmg/ddt375
PMCID: PMC3782071  PMID: 23918660
3.  Integrated virus-host methylome analysis in head and neck squamous cell carcinoma 
Epigenetics  2013;8(9):953-961.
One in six cancers worldwide is caused by infection and human papillomavirus (HPV) is one of the main culprits. To better understand the dynamics of HPV integration and its effect on both the viral and host methylomes, we conducted whole-genome DNA methylation analysis using MeDIP-seq of HPV+ and HPV- head and neck squamous cell carcinoma (HNSCC). We determined the viral subtype to be HPV-16 in all cases and show that HPV-16 integrates into the host genome at multiple random sites and that this process predominantly involves the transcriptional repressor gene (E2) in the viral genome. Comparative analysis identified 453 (FDR ≤ 0.01) differentially methylated regions (DMRs) in the HPV+ host methylome. Bioinformatics characterization of these DMRs confirmed the previously reported cadherin genes to be affected but also revealed new targets for HPV-mediated methylation changes at regions not covered by array-based platforms, including the recently identified super-enhancers.
doi:10.4161/epi.25614
PMCID: PMC3883772  PMID: 23867721
human papillomavirus (HPV); head and neck squamous cell carcinoma (HNSCC); DNA methylation; methylome; epigenome
4.  The good, the bad and the ugly: Epigenetic mechanisms in glioblastoma 
Molecular Aspects of Medicine  2013;34(4):849-862.
Cell type-specific patterns of gene expression reflect epigenetic changes imposed through a particular developmental lineage as well as those triggered by environmental cues within adult tissues. There is great interest in elucidating the molecular basis and functional importance of epigenetic mechanisms in both normal physiology and disease – particularly in cancer, where abnormal ‘-omic’ states are often observed. In this article we review recent progress in studies of epigenetic mechanisms in the most common primary adult brain cancer, glioblastoma multiforme. Three distinct areas are discussed. First, the evidence in support of ongoing ‘normal’ epigenetic processes associated with differentiation – as predicted by ‘cancer stem cell’ models of the disease. Second, identification of site-specific and global epigenetic abnormalities. Third, genetic disruptions directly within the core epigenetic machinery, exemplified by the recently identified mutations within isocitrate dehydrogenase genes IDH1/2 and variant histone genes H3.3/H3F3A. These constitute the ‘good, the bad and the ugly’ of epigenetic mechanisms in cancer.
doi:10.1016/j.mam.2012.06.007
PMCID: PMC3714597  PMID: 22771539
Epigenetics; Glioma; DNA methylation; Central nervous system (CNS); Differentiation; Cancer stem cells
5.  Sequencing and comparative analysis of the gorilla MHC genomic sequence 
Major histocompatibility complex (MHC) genes play a critical role in vertebrate immune response and because the MHC is linked to a significant number of auto-immune and other diseases it is of great medical interest. Here we describe the clone-based sequencing and subsequent annotation of the MHC region of the gorilla genome. Because the MHC is subject to extensive variation, both structural and sequence-wise, it is not readily amenable to study in whole genome shotgun sequence such as the recently published gorilla genome. The variation of the MHC also makes it of evolutionary interest and therefore we analyse the sequence in the context of human and chimpanzee. In our comparisons with human and re-annotated chimpanzee MHC sequence we find that gorilla has a trimodular RCCX cluster, versus the reference human bimodular cluster, and additional copies of Class I (pseudo)genes between Gogo-K and Gogo-A (the orthologues of HLA-K and -A). We also find that Gogo-H (and Patr-H) is coding versus the HLA-H pseudogene and, conversely, there is a Gogo-DQB2 pseudogene versus the HLA-DQB2 coding gene. Our analysis, which is freely available through the VEGA genome browser, provides the research community with a comprehensive dataset for comparative and evolutionary research of the MHC.
doi:10.1093/database/bat011
PMCID: PMC3626023  PMID: 23589541
6.  An integrative network algorithm identifies age-associated differential methylation interactome hotspots targeting stem-cell differentiation pathways 
Scientific Reports  2013;3:1630.
Epigenetic changes have been associated with ageing and cancer. Identifying and interpreting epigenetic changes associated with such phenotypes may benefit from integration with protein interactome models. We here develop and validate a novel integrative epigenome-interactome approach to identify differential methylation interactome hotspots associated with a phenotype of interest. We apply the algorithm to cancer and ageing, demonstrating the existence of hotspots associated with these phenotypes. Importantly, we discover tissue independent age-associated hotspots targeting stem-cell differentiation pathways, which we validate in independent DNA methylation data sets, encompassing over 1000 samples from different tissue types. We further show that these pathways would not have been discovered had we used a non-network based approach and that the use of the protein interaction network improves the overall robustness of the inference procedure. The proposed algorithm will be useful to any study seeking to identify interactome hotspots associated with common phenotypes.
doi:10.1038/srep01630
PMCID: PMC3620664  PMID: 23568264
7.  Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma 
Genome Medicine  2013;5(2):15.
Background
Human papillomavirus-positive (HPV+) head and neck squamous cell carcinoma (HNSCC) represents a distinct clinical and epidemiological condition compared with HPV-negative (HPV-) HNSCC. To test the possible involvement of epigenetic modulation by HPV in HNSCC, we conducted a genome-wide DNA-methylation analysis.
Methods
Using laser-capture microdissection of 42 formalin-fixed paraffin wax-embedded (FFPE) HNSCCs, we generated DNA-methylation profiles of 18 HPV+ and 14 HPV- samples, using Infinium 450 k BeadArray technology. Methylation data were validated in two sets of independent HPV+/HPV- HNSCC samples (fresh-frozen samples and cell lines) using two independent methods (Infinium 450 k and whole-genome methylated DNA immunoprecipitation sequencing (MeDIP-seq)). For the functional analysis, an HPV- HNSCC cell line was transduced with lentiviral constructs containing the two HPV oncogenes (E6 and E7), and effects on methylation were assayed using the Infinium 450 k technology.
Results and discussion
Unsupervised clustering over the methylation variable positions (MVPs) with greatest variation showed that samples segregated in accordance with HPV status, but also that HPV+ tumors are heterogeneous. MVPs were significantly enriched at transcriptional start sites, leading to the identification of a candidate CpG island methylator phenotype in a sub-group of the HPV+ tumors. Supervised analysis identified a strong preponderance (87%) of MVPs towards hypermethylation in HPV+ HNSCC. Meta-analysis of our HNSCC and publicly available methylation data in cervical and lung cancers confirmed the observed DNA-methylation signature to be HPV-specific and tissue-independent. Grouping of MVPs into functionally more significant differentially methylated regions identified 43 hypermethylated promoter DMRs, including for three cadherins of the Polycomb group target genes. Integration with independent expression data showed strong negative correlation, especially for the cadherin gene-family members. Combinatorial ectopic expression of the two HPV oncogenes (E6 and E7) in an HPV- HNSCC cell line partially phenocopied the hypermethylation signature seen in HPV+ HNSCC tumors, and established E6 as the main viral effector gene.
Conclusions
Our data establish that archival FFPE tissue is very suitable for this type of methylome analysis, and suggest that HPV modulates the HNSCC epigenome through hypermethylation of Polycomb repressive complex 2 target genes such as cadherins, which are implicated in tumor progression and metastasis.
doi:10.1186/gm419
PMCID: PMC3706778  PMID: 23419152
8.  Epigenome-Wide Association Studies for common human diseases 
Nature reviews. Genetics  2011;12(8):529-541.
Despite the success of genome-wide association studies (GWAS) in identifying loci associated with common diseases, a significant proportion of the causality remains unexplained. Recent advances in genomic technologies have placed us in a position to initiate large-scale studies of human disease-associated epigenetic variation, specifically variation in DNA methylation (DNAm). Such Epigenome-Wide Association Studies (EWAS) present novel opportunities but also create new challenges that are not encountered in GWAS. We discuss EWAS study design, cohort and sample selections, statistical significance and power, confounding factors, and follow-up studies. We also discuss how integration of EWAS with GWAS can help to dissect complex GWAS haplotypes for functional analysis.
doi:10.1038/nrg3000
PMCID: PMC3508712  PMID: 21747404
Epigenomics; Disease Genetics; DNA Methylation; Epigenetics; Quantitative Trait
9.  A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data 
Bioinformatics  2012;29(2):189-196.
Motivation: The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefore how best to adjust for the two different probe designs.
Results: Here we propose a novel model-based intra-array normalization strategy for 450 k data, called BMIQ (Beta MIxture Quantile dilation), to adjust the beta-values of type2 design probes into a statistical distribution characteristic of type1 probes. The strategy involves application of a three-state beta-mixture model to assign probes to methylation states, subsequent transformation of probabilities into quantiles and finally a methylation-dependent dilation transformation to preserve the monotonicity and continuity of the data. We validate our method on cell-line data, fresh frozen and paraffin-embedded tumour tissue samples and demonstrate that BMIQ compares favourably with two competing methods. Specifically, we show that BMIQ improves the robustness of the normalization procedure, reduces the technical variation and bias of type2 probe values and successfully eliminates the type1 enrichment bias caused by the lower dynamic range of type2 probes. BMIQ will be useful as a preprocessing step for any study using the Illumina Infinium 450 k platform.
Availability: BMIQ is freely available from http://code.google.com/p/bmiq/.
Contact: a.teschendorff@ucl.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online
doi:10.1093/bioinformatics/bts680
PMCID: PMC3546795  PMID: 23175756
10.  Comments on: Interpretation of genome-wide infinium methylation data from ligated DNA in formalin-fixed paraffin-embedded paired tumor and normal tissue 
BMC Research Notes  2012;5:631.
BMC Research Notes recently published a research article regarding the use of ligated DNA extracted from formalin-fixed paraffin embedded (FFPE) tissue on the Illumina Infinium methylation platform - “Interpretation of genome-wide infinium methylation data from ligated DNA in formalin-fixed, paraffin-embedded paired tumor and normal tissue” Jasmine et al. BMC Research Notes 2012, 5:117. This article repeatedly refers to our previous work and concludes that methylation data obtained from ligated FFPE extracted DNA should be used with great caution. In this Discussion we review the data analysis performed in Jasmine et al’s paper and suggest limitations which subsequently lead the authors to draw what we believe are incorrect conclusions. Moreover, we continue to analyse genome-wide methylation data from DNA extracted from FFPE tissue successfully on both the HumMeth27 and 450 K arrays.
doi:10.1186/1756-0500-5-631
PMCID: PMC3531275  PMID: 23148593
11.  Human-specific CpG “beacons” identify loci associated with human-specific traits and disease 
Epigenetics  2012;7(10):1188-1199.
Regulatory change has long been hypothesized to drive the delineation of the human phenotype from other closely related primates. Here we provide evidence that CpG dinucleotides play a special role in this process. CpGs enable epigenome variability via DNA methylation, and this epigenetic mark functions as a regulatory mechanism. Therefore, species-specific CpGs may influence species-specific regulation. We report non-polymorphic species-specific CpG dinucleotides (termed “CpG beacons”) as a distinct genomic feature associated with CpG island (CGI) evolution, human traits and disease. Using an inter-primate comparison, we identified 21 extreme CpG beacon clusters (≥ 20/kb peaks, empirical p < 1.0 × 10−3) in humans, which include associations with four monogenic developmental and neurological disease related genes (Benjamini-Hochberg corrected p = 6.03 × 10−3). We also demonstrate that beacon-mediated CpG density gain in CGIs correlates with reduced methylation in these species in orthologous CGIs over time, via human, chimpanzee and macaque MeDIP-seq. Therefore mapping into both the genomic and epigenomic space the identified CpG beacon clusters define points of intersection where a substantial two-way interaction between genetic sequence and epigenetic state has occurred. Taken together, our data support a model for CpG beacons to contribute to CGI evolution from genesis to tissue-specific to constitutively active CGIs.
doi:10.4161/epi.22127
PMCID: PMC3469460  PMID: 22968434
epigenetics; epigenomics; CpG islands; gene regulation; evolution; human disease
12.  Resources for methylome analysis suitable for gene knockout studies of potential epigenome modifiers 
GigaScience  2012;1:3.
Background
Methylated DNA immunoprecipitation (MeDIP) is a popular enrichment based method and can be combined with sequencing (termed MeDIP-seq) to interrogate the methylation status of cytosines across entire genomes. However, quality control and analysis of MeDIP-seq data have remained to be a challenge.
Results
We report genome-wide DNA methylation profiles of wild type (wt) and mutant mouse cells, comprising 3 biological replicates of Thymine DNA glycosylase (Tdg) knockout (KO) embryonic stem cells (ESCs), in vitro differentiated neural precursor cells (NPCs) and embryonic fibroblasts (MEFs). The resulting 18 methylomes were analysed with MeDUSA (Methylated DNA Utility for Sequence Analysis), a novel MeDIP-seq computational analysis pipeline for the identification of differentially methylated regions (DMRs). The observed increase of hypermethylation in MEF promoter-associated CpG islands supports a previously proposed role for Tdg in the protection of regulatory regions from epigenetic silencing. Further analysis of genes and regions associated with the DMRs by gene ontology, pathway, and ChIP analyses revealed further insights into Tdg function, including an association of TDG with low-methylated distal regulatory regions.
Conclusions
We demonstrate that MeDUSA is able to detect both large-scale changes between cells from different stages of differentiation and also small but significant changes between the methylomes of cells that only differ in the KO of a single gene. These changes were validated utilising publicly available datasets and confirm TDG's function in the protection of regulatory regions from epigenetic silencing.
doi:10.1186/2047-217X-1-3
PMCID: PMC3617451  PMID: 23587164
Methylome; MeDIP-seq; Epigenetics; Epigenomics; DNA methylation; Computational pipeline; MeDUSA
13.  Functional regulatory T cells produced by inhibiting cyclic nucleotide phosphodiesterase type 3 prevent allograft rejection 
Science translational medicine  2011;3(83):83ra40.
Regulatory T cells (Tregs) manipulated ex vivo have potential as cellular therapeutics in autoimmunity and transplantation. Although it is possible to expand naturally occurring Tregs, an attractive alternative possibility, particularly suited to solid organ and bone marrow transplantation, is the stimulation of total T cell populations with defined allogeneic antigen presenting cells under conditions that lead to the generation or expansion of donor-reactive, adaptive Tregs. Here we demonstrate that stimulation of mouse CD4+ T cells by immature allogeneic dendritic cells (DCs) combined with pharmacological inhibition of phosphodiesterase 3 (PDEi) results in a functional enrichment of Foxp3+ T cells. Without further manipulation or selection, the resultant population delayed skin allograft rejection mediated by polyclonal CD4+ effectors or donor-reactive CD8+ TCR transgenic T cells and inhibited both effector cell proliferation and T cell priming for IFN-γ production. Notably, PDE inhibition also enhanced the enrichment of human Foxp3+ CD4+ T cells driven by allogeneic APC. These cells inhibited T cell proliferation in a standard in vitro mixed lymphocyte assay and importantly, attenuated the development of vasculopathy mediated by autologous PBMC in a functionally relevant humanized mouse transplant model. These data establish a method for the ex vivo generation of graft-reactive, functional mouse and human Tregs that uses a clinically approved agent, making pharmacological PDE inhibition a potential strategy for Treg-based therapies
doi:10.1126/scitranslmed.3002099
PMCID: PMC3321352  PMID: 21593400
14.  Plant and animal endemism in the eastern Andean slope: challenges to conservation 
BMC Ecology  2012;12:1.
Background
The Andes-Amazon basin of Peru and Bolivia is one of the most data-poor, biologically rich, and rapidly changing areas of the world. Conservation scientists agree that this area hosts extremely high endemism, perhaps the highest in the world, yet we know little about the geographic distributions of these species and ecosystems within country boundaries. To address this need, we have developed conservation data on endemic biodiversity (~800 species of birds, mammals, amphibians, and plants) and terrestrial ecological systems (~90; groups of vegetation communities resulting from the action of ecological processes, substrates, and/or environmental gradients) with which we conduct a fine scale conservation prioritization across the Amazon watershed of Peru and Bolivia. We modelled the geographic distributions of 435 endemic plants and all 347 endemic vertebrate species, from existing museum and herbaria specimens at a regional conservation practitioner's scale (1:250,000-1:1,000,000), based on the best available tools and geographic data. We mapped ecological systems, endemic species concentrations, and irreplaceable areas with respect to national level protected areas.
Results
We found that sizes of endemic species distributions ranged widely (< 20 km2 to > 200,000 km2) across the study area. Bird and mammal endemic species richness was greatest within a narrow 2500-3000 m elevation band along the length of the Andes Mountains. Endemic amphibian richness was highest at 1000-1500 m elevation and concentrated in the southern half of the study area. Geographical distribution of plant endemism was highly taxon-dependent. Irreplaceable areas, defined as locations with the highest number of species with narrow ranges, overlapped slightly with areas of high endemism, yet generally exhibited unique patterns across the study area by species group. We found that many endemic species and ecological systems are lacking national-level protection; a third of endemic species have distributions completely outside of national protected areas. Protected areas cover only 20% of areas of high endemism and 20% of irreplaceable areas. Almost 40% of the 91 ecological systems are in serious need of protection (= < 2% of their ranges protected).
Conclusions
We identify for the first time, areas of high endemic species concentrations and high irreplaceability that have only been roughly indicated in the past at the continental scale. We conclude that new complementary protected areas are needed to safeguard these endemics and ecosystems. An expansion in protected areas will be challenged by geographically isolated micro-endemics, varied endemic patterns among taxa, increasing deforestation, resource extraction, and changes in climate. Relying on pre-existing collections, publically accessible datasets and tools, this working framework is exportable to other regions plagued by incomplete conservation data.
doi:10.1186/1472-6785-12-1
PMCID: PMC3311091  PMID: 22284854
Andes-Amazon; conservation planning; ecological systems; endemic species richness; irreplaceability; Latin America
15.  The epigenomic interface between genome and environment in common complex diseases 
Briefings in Functional Genomics  2010;9(5-6):477-485.
The epigenome plays the pivotal role as interface between genome and environment. True genome-wide assessments of epigenetic marks, such as DNA methylation (methylomes) or chromatin modifications (chromatinomes), are now possible, either through high-throughput arrays or increasingly by second-generation DNA sequencing methods. The ability to collect these data at this level of resolution enables us to begin to be able to propose detailed questions, and interrogate this information, with regards to changes that occur due to development, lineage and tissue-specificity, and significantly those caused by environmental influence, such as ageing, stress, diet, hormones or toxins. Common complex traits are under variable levels of genetic influence and additionally epigenetic effect. The detection of pathological epigenetic alterations will reveal additional insights into their aetiology and how possible environmental modulation of this mechanism may occur. Due to the reversibility of these marks, the potential for sequence-specific targeted therapeutics exists. This review surveys recent epigenomic advances and their current and prospective application to the study of common diseases.
doi:10.1093/bfgp/elq026
PMCID: PMC3080746  PMID: 21062751
Genomics; epigenetics; epigenomics; common disease; complex traits; gene environment interaction
16.  Genome-Wide Screen for Differential DNA Methylation Associated with Neural Cell Differentiation in Mouse 
PLoS ONE  2011;6(10):e26002.
Cellular differentiation involves widespread epigenetic reprogramming, including modulation of DNA methylation patterns. Using Differential Methylation Hybridization (DMH) in combination with a custom DMH array containing 51,243 features covering more than 16,000 murine genes, we carried out a genome-wide screen for cell- and tissue-specific differentially methylated regions (tDMRs) in undifferentiated embryonic stem cells (ESCs), in in-vitro induced neural stem cells (NSCs) and 8 differentiated embryonic and adult tissues. Unsupervised clustering of the generated data showed distinct cell- and tissue-specific DNA methylation profiles, revealing 202 significant tDMRs (p<0.005) between ESCs and NSCs and a further 380 tDMRs (p<0.05) between NSCs/ESCs and embryonic brain tissue. We validated these tDMRs using direct bisulfite sequencing (DBS) and methylated DNA immunoprecipitation on chip (MeDIP-chip). Gene ontology (GO) analysis of the genes associated with these tDMRs showed significant (absolute Z score>1.96) enrichment for genes involved in neural differentiation, including, for example, Jag1 and Tcf4. Our results provide robust evidence for the relevance of DNA methylation in early neural development and identify novel marker candidates for neural cell differentiation.
doi:10.1371/journal.pone.0026002
PMCID: PMC3196508  PMID: 22028803
17.  Identification of Type 1 Diabetes–Associated DNA Methylation Variable Positions That Precede Disease Diagnosis 
PLoS Genetics  2011;7(9):e1002300.
Monozygotic (MZ) twin pair discordance for childhood-onset Type 1 Diabetes (T1D) is ∼50%, implicating roles for genetic and non-genetic factors in the aetiology of this complex autoimmune disease. Although significant progress has been made in elucidating the genetics of T1D in recent years, the non-genetic component has remained poorly defined. We hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology and, thus, performed an epigenome-wide association study (EWAS) for this disease. We generated genome-wide DNA methylation profiles of purified CD14+ monocytes (an immune effector cell type relevant to T1D pathogenesis) from 15 T1D–discordant MZ twin pairs. This identified 132 different CpG sites at which the direction of the intra-MZ pair DNA methylation difference significantly correlated with the diabetic state, i.e. T1D–associated methylation variable positions (T1D–MVPs). We confirmed these T1D–MVPs display statistically significant intra-MZ pair DNA methylation differences in the expected direction in an independent set of T1D–discordant MZ pairs (P = 0.035). Then, to establish the temporal origins of the T1D–MVPs, we generated two further genome-wide datasets and established that, when compared with controls, T1D–MVPs are enriched in singletons both before (P = 0.001) and at (P = 0.015) disease diagnosis, and also in singletons positive for diabetes-associated autoantibodies but disease-free even after 12 years follow-up (P = 0.0023). Combined, these results suggest that T1D–MVPs arise very early in the etiological process that leads to overt T1D. Our EWAS of T1D represents an important contribution toward understanding the etiological role of epigenetic variation in type 1 diabetes, and it is also the first systematic analysis of the temporal origins of disease-associated epigenetic variation for any human complex disease.
Author Summary
Type 1 diabetes (T1D) is a complex autoimmune disease affecting >30 million people worldwide. It is caused by a combination of genetic and non-genetic factors, leading to destruction of insulin-secreting cells. Although significant progress has recently been made in elucidating the genetics of T1D, the non-genetic component has remained poorly defined. Epigenetic modifications, such as methylation of DNA, are indispensable for genomic processes such as transcriptional regulation and are frequently perturbed in human disease. We therefore hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology, and we performed a genome-wide DNA methylation analysis of a specific subset of immune cells (monocytes) from monozygotic twins discordant for T1D. This revealed the presence of T1D–specific methylation variable positions (T1D–MVPs) in the T1D–affected co-twins. Since these T1D–MVPs were found in MZ twins, they cannot be due to genetic differences. Additional experiments revealed that some of these T1D–MVPs are found in individuals before T1D diagnosis, suggesting they arise very early in the process that leads to overt T1D and are not simply due to post-disease associated factors (e.g. medication or long-term metabolic changes). T1D–MVPs may thus potentially represent a previously unappreciated, and important, component of type 1 diabetes risk.
doi:10.1371/journal.pgen.1002300
PMCID: PMC3183089  PMID: 21980303
18.  The tammar wallaby major histocompatibility complex shows evidence of past genomic instability 
BMC Genomics  2011;12:421.
Background
The major histocompatibility complex (MHC) is a group of genes with a variety of roles in the innate and adaptive immune responses. MHC genes form a genetically linked cluster in eutherian mammals, an organization that is thought to confer functional and evolutionary advantages to the immune system. The tammar wallaby (Macropus eugenii), an Australian marsupial, provides a unique model for understanding MHC gene evolution, as many of its antigen presenting genes are not linked to the MHC, but are scattered around the genome.
Results
Here we describe the 'core' tammar wallaby MHC region on chromosome 2q by ordering and sequencing 33 BAC clones, covering over 4.5 MB and containing 129 genes. When compared to the MHC region of the South American opossum, eutherian mammals and non-mammals, the wallaby MHC has a novel gene organization. The wallaby has undergone an expansion of MHC class II genes, which are separated into two clusters by the class III genes. The antigen processing genes have undergone duplication, resulting in two copies of TAP1 and three copies of TAP2. Notably, Kangaroo Endogenous Retroviral Elements are present within the region and may have contributed to the genomic instability.
Conclusions
The wallaby MHC has been extensively remodeled since the American and Australian marsupials last shared a common ancestor. The instability is characterized by the movement of antigen presenting genes away from the core MHC, most likely via the presence and activity of retroviral elements. We propose that the movement of class II genes away from the ancestral class II region has allowed this gene family to expand and diversify in the wallaby. The duplication of TAP genes in the wallaby MHC makes this species a unique model organism for studying the relationship between MHC gene organization and function.
doi:10.1186/1471-2164-12-421
PMCID: PMC3179965  PMID: 21854592
19.  DNA methylation profiling of human chromosomes 6, 20 and 22 
Nature genetics  2006;38(12):1378-1385.
DNA methylation constitutes the most stable type of epigenetic modifications modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation reference profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of 6 annotation categories, revealed evolutionary conserved regions to be the predominant sites for differential DNA methylation and a core region surrounding the transcriptional start site as informative surrogate for promoter methylation. We find 17% of the 873 analyzed genes differentially methylated in their 5′-untranslated regions (5′-UTR) and about one third of the differentially methylated 5′-UTRs to be inversely correlated with transcription. While our study was controlled for factors reported to affect DNA methylation such as sex and age, we did not find any significant attributable effects. Our data suggest DNA methylation to be ontogenetically more stable than previously thought.
doi:10.1038/ng1909
PMCID: PMC3082778  PMID: 17072317
20.  Integrated Genetic and Epigenetic Analysis Identifies Haplotype-Specific Methylation in the FTO Type 2 Diabetes and Obesity Susceptibility Locus 
PLoS ONE  2010;5(11):e14040.
Recent multi-dimensional approaches to the study of complex disease have revealed powerful insights into how genetic and epigenetic factors may underlie their aetiopathogenesis. We examined genotype-epigenotype interactions in the context of Type 2 Diabetes (T2D), focussing on known regions of genomic susceptibility. We assayed DNA methylation in 60 females, stratified according to disease susceptibility haplotype using previously identified association loci. CpG methylation was assessed using methylated DNA immunoprecipitation on a targeted array (MeDIP-chip) and absolute methylation values were estimated using a Bayesian algorithm (BATMAN). Absolute methylation levels were quantified across LD blocks, and we identified increased DNA methylation on the FTO obesity susceptibility haplotype, tagged by the rs8050136 risk allele A (p = 9.40×10−4, permutation p = 1.0×10−3). Further analysis across the 46 kb LD block using sliding windows localised the most significant difference to be within a 7.7 kb region (p = 1.13×10−7). Sequence level analysis, followed by pyrosequencing validation, revealed that the methylation difference was driven by the co-ordinated phase of CpG-creating SNPs across the risk haplotype. This 7.7 kb region of haplotype-specific methylation (HSM), encapsulates a Highly Conserved Non-Coding Element (HCNE) that has previously been validated as a long-range enhancer, supported by the histone H3K4me1 enhancer signature. This study demonstrates that integration of Genome-Wide Association (GWA) SNP and epigenomic DNA methylation data can identify potential novel genotype-epigenotype interactions within disease-associated loci, thus providing a novel route to aid unravelling common complex diseases.
doi:10.1371/journal.pone.0014040
PMCID: PMC2987816  PMID: 21124985
21.  The DNA Methylome of Human Peripheral Blood Mononuclear Cells 
PLoS Biology  2010;8(11):e1000533.
Analysis across the genome of patterns of DNA methylation reveals a rich landscape of allele-specific epigenetic modification and consequent effects on allele-specific gene expression.
DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and <0.2% of non-CpG sites were methylated, demonstrating that non-CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences. Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599 haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their transcriptional start sites of which >80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.
Author Summary
Epigenetic modifications such as addition of methyl groups to cytosine in DNA play a role in regulating gene expression. To better understand these processes, knowledge of the methylation status of all cytosine bases in the genome (the methylome) is required. DNA methylation can differ between the two gene copies (alleles) in each cell. Such allele-specific methylation (ASM) can be due to parental origin of the alleles (imprinting), X chromosome inactivation in females, and other as yet unknown mechanisms. This may significantly alter the expression profile arising from different allele combinations in different individuals. Using advanced sequencing technology, we have determined the methylome of human peripheral blood mononuclear cells (PBMC). Importantly, the PBMC were obtained from the same male Han Chinese individual whose complete genome had previously been determined. This allowed us, for the first time, to study genome-wide differences in ASM. Our analysis shows that ASM in PBMC is higher than can be accounted for by regions known to undergo parent-of-origin imprinting and frequently (>80%) correlates with allele-specific expression (ASE) of the corresponding gene. In addition, our data reveal a rich landscape of epigenomic variation for 20 genomic features, including regulatory, coding, and non-coding sequences, and provide a valuable resource for future studies. Our work further establishes whole-genome sequencing as an efficient method for methylome analysis.
doi:10.1371/journal.pbio.1000533
PMCID: PMC2976721  PMID: 21085693
22.  AutoMeDIP-seq: A high-throughput, whole genome, DNA methylation assay 
Methods (San Diego, Calif.)  2010;52(3-13):223-231.
DNA methylation is an epigenetic mark linking DNA sequence and transcription regulation, and therefore plays an important role in phenotypic plasticity. The ideal whole genome methylation (methylome) assay should be accurate, affordable, high-throughput and agnostic with respect to genomic features. To this end, the methylated DNA immunoprecipitation (MeDIP) assay provides a good balance of these criteria. In this Methods paper, we present AutoMeDIP-seq, a technique that combines an automated MeDIP protocol with library preparation steps for subsequent second-generation sequencing. We assessed recovery of DNA sequences covering a range of CpG densities using in vitro methylated λ-DNA fragments (and their unmethylated counterparts) spiked-in against a background of human genomic DNA. We show that AutoMeDIP is more reliable than manual protocols, shows a linear recovery profile of fragments related to CpG density (R2 = 0.86), and that it is highly specific (>99%). AutoMeDIP-seq offers a competitive approach to high-throughput methylome analysis of medium to large cohorts.
doi:10.1016/j.ymeth.2010.04.003
PMCID: PMC2977854  PMID: 20385236
DNA methylation; Automation; Whole genome; High-throughput sequencing; MeDIP
23.  Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus 
BMC Medical Genomics  2010;3:33.
Background
Diabetic nephropathy is a serious complication of diabetes mellitus and is associated with considerable morbidity and high mortality. There is increasing evidence to suggest that dysregulation of the epigenome is involved in diabetic nephropathy. We assessed whether epigenetic modification of DNA methylation is associated with diabetic nephropathy in a case-control study of 192 Irish patients with type 1 diabetes mellitus (T1D). Cases had T1D and nephropathy whereas controls had T1D but no evidence of renal disease.
Methods
We performed DNA methylation profiling in bisulphite converted DNA from cases and controls using the recently developed Illumina Infinium® HumanMethylation27 BeadChip, that enables the direct investigation of 27,578 individual cytosines at CpG loci throughout the genome, which are focused on the promoter regions of 14,495 genes.
Results
Singular Value Decomposition (SVD) analysis indicated that significant components of DNA methylation variation correlated with patient age, time to onset of diabetic nephropathy, and sex. Adjusting for confounding factors using multivariate Cox-regression analyses, and with a false discovery rate (FDR) of 0.05, we observed 19 CpG sites that demonstrated correlations with time to development of diabetic nephropathy. Of note, this included one CpG site located 18 bp upstream of the transcription start site of UNC13B, a gene in which the first intronic SNP rs13293564 has recently been reported to be associated with diabetic nephropathy.
Conclusion
This high throughput platform was able to successfully interrogate the methylation state of individual cytosines and identified 19 prospective CpG sites associated with risk of diabetic nephropathy. These differences in DNA methylation are worthy of further follow-up in replication studies using larger cohorts of diabetic patients with and without nephropathy.
doi:10.1186/1755-8794-3-33
PMCID: PMC2924253  PMID: 20687937
24.  Advances in the identification and analysis of allele-specific expression 
Genome Medicine  2009;1(5):56.
Allele-specific expression (ASE) is essential for normal development and many cellular processes but, if impaired, can result in disease. ASE is a feature of organisms with genomes consisting of more than one set of homologous chromosomes. The higher the number of chromosome sets (ploidy) per cell, the higher the potential complexity of ASE. Humans, for instance, are diploid (except germ cells, which are haploid), resulting in multiple possible expression states in time and space for each set of alleles. ASE is invoked and modulated by both genetic and epigenetic changes, affecting the underlying DNA sequence or chromatin of each allele, respectively. Although numerous methods have been developed to assay ASE, they usually require RNA to be available and are dependent upon genetic polymorphisms (such as single nucleotide polymorphisms (SNPs)) to differentiate between allelic transcripts. The rapid convergence to second-generation sequencing as the method of choice to examine genomic, epigenomic and transcriptomic data enables an integrated and more general approach to define and predict ASE, independent of SNPs. This 'Omni-Seq' approach has the potential to advance our understanding of the biology and pathophysiology of ASE-mediated processes by elucidating subtle combinatorial effects, leading to the accurate delineation of sub-phenotypes with consequential benefit for improved insight into disease etiology.
doi:10.1186/gm56
PMCID: PMC2689448  PMID: 19490587
25.  DNA Methylation-mediated Down-regulation of DNA Methyltransferase-1 (DNMT1) Is Coincident with, but Not Essential for, Global Hypomethylation in Human Placenta 
The Journal of Biological Chemistry  2010;285(13):9583-9593.
The genome of extraembryonic tissue, such as the placenta, is hypomethylated relative to that in somatic tissues. However, the origin and role of this hypomethylation remains unclear. The DNA methyltransferases DNMT1, -3A, and -3B are the primary mediators of the establishment and maintenance of DNA methylation in mammals. In this study, we investigated promoter methylation-mediated epigenetic down-regulation of DNMT genes as a potential regulator of global methylation levels in placental tissue. Although DNMT3A and -3B promoters lack methylation in all somatic and extraembryonic tissues tested, we found specific hypermethylation of the maintenance DNA methyltransferase (DNMT1) gene and found hypomethylation of the DNMT3L gene in full term and first trimester placental tissues. Bisulfite DNA sequencing revealed monoallelic methylation of DNMT1, with no evidence of imprinting (parent of origin effect). In vitro reporter experiments confirmed that DNMT1 promoter methylation attenuates transcriptional activity in trophoblast cells. However, global hypomethylation in the absence of DNMT1 down-regulation is apparent in non-primate placentas and in vitro derived human cytotrophoblast stem cells, suggesting that DNMT1 down-regulation is not an absolute requirement for genomic hypomethylation in all instances. These data represent the first demonstration of methylation-mediated regulation of the DNMT1 gene in any system and demonstrate that the unique epigenome of the human placenta includes down-regulation of DNMT1 with concomitant hypomethylation of the DNMT3L gene. This strongly implicates epigenetic regulation of the DNMT gene family in the establishment of the unique epigenetic profile of extraembryonic tissue in humans.
doi:10.1074/jbc.M109.064956
PMCID: PMC2843208  PMID: 20071334
Development Differentiation/Tissue; DNA/Methylation; DNA/Methyltransferase; Epigenetics; Gene Transcription; Extraembryonic Tissue; Placenta; Trophoblast

Results 1-25 (52)