Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Reproducible High Yields of Recombinant Adeno-Associated Virus Produced Using Invertebrate Cells in 0.02- to 200-Liter Cultures 
Human Gene Therapy  2011;22(8):1021-1030.
The large amounts of recombinant adeno-associated virus (rAAV) vector needed for clinical trials and eventual commercialization require robust, economical, reproducible, and scalable production processes compatible with current good manufacturing practice. rAAV produced using baculovirus and insect cells satisfies these conditions; however, recovering rAAV particles from 200-liter bioreactors is more complicated than bench-scale vector preparations. Using a variety of processing media, we developed a reliable and routine downstream procedure for rAAV production that is scalable from 0.02- to 200-liter cultures. To facilitate the upstream process, we adapted the titerless infected-cell preservation and scale-up process for rAAV production. Single-use aliquots of cryopreserved baculovirus-infected insect cells (BIIC) are thawed and added to the suspension culture to achieve the desired ratio of BIIC to rAAV-producer cells. By using conditions established with small-scale cultures, rAAV was produced in larger volume cultures. Strikingly consistent rAAV yields were attained in cultures ranging from 10 liters to 200 liters. Based on the final yield, each cell produced 18,000 ± 6,800 particles of purified rAAV in 10-, 20-, 100-, and 200-liter cultures. Thus, with an average cell density of 4.32 × 106 cells/ml, ≥1016 purified rAAV particles are produced from 100 to 200 liters. The downstream process resulted in about 20% recovery estimated from comparing the quantities of capsid protein antigen in the crude bioreactor material and in the final, purified product. The ease and reproducibility of rAAV production in 200-liter bioreactors suggest that the limit has not been reached, and 500-liter productions are planned.
Production of recombinant AAV in Sf9 insect cells infected with baculovirus is an established, economical, and scalable process. However, under serum-free clinical manufacturing conditions, cryopreserved baculovirus loses its ability to infect new batches of producer cells over time. This study by Cecchini and colleagues reports that cryopreserving insect cells infected with baculovirus provides a viable alternative for obtaining consistent levels of rAAV from any size culture.
PMCID: PMC3159527  PMID: 21381980
2.  MRI roadmap-guided transendocardial delivery of exon-skipping recombinant adeno-associated virus restores dystrophin expression in a canine model of Duchenne muscular dystrophy 
Gene therapy  2012;20(3):274-282.
Duchenne muscular dystrophy (DMD) cardiomyopathy patients currently have no therapeutic options. We evaluated catheter-based transendocardial delivery of a recombinant adeno-associated virus (rAAV) expressing a small nuclear U7 RNA (U7smOPT) complementary to specific cis-acting splicing signals. Eliminating specific exons restores the open-reading frame resulting in translation of truncated dystrophin protein. To test this approach in a clinically relevant DMD model, golden retriever muscular dystrophy (GRMD) dogs received serotype 6 rAAV-U7smOPT via the intracoronary or transendocardial route. Transendocardial injections were performed with an injection-tipped catheter and fluoroscopic guidance using X-ray fused with MRI (XFM) roadmaps. Three months after treatment, tissues were analyzed for DNA, RNA, dystrophin protein, and histology. Whereas intracoronary delivery did not result in effective transduction, transendocardial injections, XFM guidance, enabled 30±10 non-overlapping injections per animal. Vector DNA was detectable in all samples tested and ranged from <1 to >3000 vector genome copies per cell. RNA analysis, western blot analysis, and immunohistology demonstrated extensive expression of skipped RNA and dystrophin protein in the treated myocardium. Left ventricular function remained unchanged over a three-month follow-up. These results demonstrated that effective transendocardial delivery of rAAV-U7smOPT was achieved using XFM. This approach restores an open reading frame for dystrophin in affected dogs and has potential clinical utility.
PMCID: PMC3424392  PMID: 22551778
Duchenne muscular dystrophy; rAAV; exon-skipping; cardiomyopathy
3.  Production and Characterization of Novel Recombinant Adeno-Associated Virus Replicative-Form Genomes: A Eukaryotic Source of DNA for Gene Transfer 
PLoS ONE  2013;8(8):e69879.
Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV) inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or “CELiD”, DNA). CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5×109 Sf9 cells, and 1–15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.
PMCID: PMC3731302  PMID: 23936358
4.  Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales 
Journal of virological methods  2007;145(2):155-161.
The conventional methods for producing recombinant adeno-associated virus (rAAV) rely on transient transfection of adherent mammalian cells. To gain acceptance and achieve current good manufacturing process (cGMP) compliance, clinical grade rAAV production process should have the following qualities: simplicity, consistency, cost effectiveness, and scalability. Currently, the only viable method for producing rAAV in large-scale, e.g.≥1016 particles per production run, utilizes Baculovirus Expression Vectors (BEVs) and insect cells suspension cultures. The previously described rAAV production in 40 L culture using a stirred tank bioreactor requires special conditions for implementation and operation not available in all laboratories. Alternatives to producing rAAV in stirred-tank bioreactors are single-use, disposable bioreactors, e.g. Wave™. The disposable bags are purchased pre-sterilized thereby eliminating the need for end-user sterilization and also avoiding cleaning steps between production runs thus facilitating the production process. In this study, rAAV production in stirred tank and Wave™ bioreactors was compared. The working volumes were 10 L and 40 L for the stirred tank bioreactors and 5 L and 20 L for the Wave™ bioreactors. Comparable yields of rAAV, ~2e+13 particles per liter of cell culture were obtained in all volumes and configurations. These results demonstrate that producing rAAV in large scale using BEVs is reproducible, scalable, and independent of the bioreactor configuration. Keywords: adeno-associated vectors; large-scale production; stirred tank bioreactor; wave bioreactor; gene therapy.
PMCID: PMC2080829  PMID: 17606302
5.  Versatile and Efficient Genome Editing in Human Cells by Combining Zinc-Finger Nucleases With Adeno-Associated Viral Vectors 
Human Gene Therapy  2011;23(3):321-329.
Zinc-finger nucleases (ZFNs) have become a valuable tool for targeted genome engineering. Based on the enzyme's ability to create a site-specific DNA double-strand break, ZFNs promote genome editing by activating the cellular DNA damage response, including homology-directed repair (HDR) and nonhomologous end-joining. The goal of this study was (i) to demonstrate the versatility of combining the ZFN technology with a vector platform based on adeno-associated virus (AAV), and (ii) to assess the toxicity evoked by this platform. To this end, human cell lines that harbor enhanced green fluorescence protein (EGFP) reporters were generated to easily quantify the frequencies of gene deletion, gene disruption, and gene correction. We demonstrated that ZFN-encoding AAV expression vectors can be employed to induce large chromosomal deletions or to disrupt genes in up to 32% of transduced cells. In combination with AAV vectors that served as HDR donors, the AAV-ZFN platform was utilized to correct a mutation in EGFP in up to 6% of cells. Genome editing on the DNA level was confirmed by genotyping. Although cell cycle profiling revealed a modest G2/M arrest at high AAV-ZFN vector doses, platform-induced apoptosis could not be detected. In conclusion, the combined AAV-ZFN vector technology is a useful tool to edit the human genome with high efficiency. Because AAV vectors can transduce many cell types relevant for gene therapy, the ex vivo and in vivo delivery of ZFNs via AAV vectors will be of great interest for the treatment of inherited disorders.
Händel and colleagues characterize the genome-editing ability and toxicity of adeno-associated viral (AAV) vectors encoding zinc finger nucleases (ZFNs). ZFN-encoding AAV vectors induce large chromosomal deletions and disrupt genes in up to 32% of transduced cells harboring an enhanced green fluorescent protein (EGFP) reporter gene, and can correct an EGFP mutation in up to 6% of cells when combined with AAV vectors serving as homology-directed repair donors. No cellular apoptosis was detected.
PMCID: PMC3300077  PMID: 21980922
6.  Producing Recombinant Adeno-Associated Virus in Foster Cells: Overcoming Production Limitations Using a Baculovirus–Insect Cell Expression Strategy 
Human Gene Therapy  2009;20(8):807-817.
Establishing pharmacological parameters, such as efficacy, routes of administration, and toxicity, for recombinant adeno-associated virus (rAAV) vectors is a prerequisite for gaining acceptance for clinical applications. In fact, even a therapeutic window, that is, the dose range between therapeutic efficacy and toxicity, has yet to be determined for rAAV in vivo. Multiphase clinical trials investigating the safety and efficacy of recombinant AAV-based therapeutics will require unprecedented vector production capacity to meet the needs of preclinical toxicology studies, and the progressive clinical protocol phases of safety/dose escalation (phase I), efficacy (phase II), and high-enrollment, multicenter evaluations (phase III). Methods of rAAV production capable of supporting such trials must be scalable, robust, and efficient. We have taken advantage of the ease of scalability of nonadherent cell culture techniques coupled with the inherent efficiency of viral infection to develop an rAAV production method based on recombinant baculovirus-mediated expression of AAV components in insect-derived suspension cells.
PMCID: PMC2829278  PMID: 19604040
7.  Large-scale recombinant adeno-associated virus production 
Human Molecular Genetics  2011;20(R1):R2-R6.
Since recombinant adeno-associated virus (rAAV) was first described as a potential mammalian cell transducing system, frequent reports purportedly solving the problems of scalable production have appeared. Yet few of these processes have enabled the development of robust and economical rAAV production. Two production platforms have emerged that have gained broad support for producing both research and clinical grade vectors. These processes differ fundamentally in several aspects. One approach is based on adherent mammalian cells and uses optimized chemical transient transfection for introducing the essential genetic components into the cells. The other approach utilizes suspension cultures of invertebrate cells. Baculovirus expression vectors are used for introducing the AAV genes into the cells. In addition, the baculovirus provides the helper functions necessary for efficient AAV DNA replication. The use of suspension cell culture provides an intrinsically more scalable platform system than using adherent cells. The upstream processes for suspension cultures are amenable for automation and are easily monitored and regulated to maintain optimum conditions that produce consistent yields of rAAV. Issues relating to developing new and improving existing rAAV production methods are discussed.
PMCID: PMC3095058  PMID: 21531790
8.  Evidence of Prior Exposure to Human Bocavirus as Determined by a Retrospective Serological Study of 404 Serum Samples from Adults in the United States▿  
Recently, molecular screening for pathogenic agents has identified a partial genome of a novel parvovirus, called human bocavirus (HBoV). The presence of this newly described parvovirus correlated with upper and lower respiratory tract infections in children. Lower respiratory tract infections are a leading cause of hospital admission in children, and the etiological agent has not been identified in up to 39% of these cases. Using baculovirus expression vectors (BEVs) and an insect cell system, we produced virus-like particles (VLPs) of HBoV. The engineered BEVs express the HBoV capsid proteins stoichiometrically from a single open reading frame. Three capsid proteins assemble into the VLP rather than two proteins predicted from the HBoV genome sequence. The denatured capsid proteins VP1, VP2, and VP3 resolve on silver-stained sodium dodecyl sulfate-polyacrylamide gels as three bands with apparent molecular masses of 72 kDa, 68 kDa, and 62 kDa, respectively. VP2 apparently initiates at a GCT codon (alanine) 273 nucleotides downstream from the VP1 start site and 114 nucleotides upstream from the VP3 initiation site. We characterized the stable capsids using physical, biochemical, and serological techniques. We found that the density of the VLP is 1.32 g/cm3 and is consistent with an icosahedral symmetry with approximately a 25-nm diameter. Rabbit antiserum against the capsid of HBoV, which did not cross-react with adeno-associated virus type 2, was used to develop enzyme-linked immunosorbent assays (ELISAs) for anti-HBoV antibodies in human serum. Using ELISA, we tested 404 human serum samples and established a range of antibody titers in a large U.S. adult population sample.
PMCID: PMC2681590  PMID: 19244471
9.  Strategies for manufacturing recombinant adeno-associated virus vectors for gene therapy applications exploiting baculovirus technology 
The development of recombinant adeno-associated virus (rAAV) gene therapy applications is hampered by the inability to produce rAAV in sufficient quantities to support pre-clinical and clinical trials. Contrasting with adherent cell cultures, suspension cultures provide a straightforward means for expansion, however, transiently expressing the necessary, but cytotoxic virus proteins remains the challenge for rAAV production. Both the expansion and expression issues are resolved by using the baculovirus expression vector (BEV) and insect cell culture system. This review addresses strategies for the production of rAAV exploiting baculovirus technology at different scales using different configurations of bioreactors as well as processing and product characterization issues. The yields obtained with these optimized processes exceed ~1 × 1014 vector particles per liter of cell culture suitable for pre-clinical and clinical trials and possible commercialization.
PMCID: PMC2562640  PMID: 18632744
adeno-associated vectors; gene therapy; large-scale production; baculovirus; insect cell
10.  Scalable Generation of High-Titer Recombinant Adeno-Associated Virus Type 5 in Insect Cells 
Journal of Virology  2006;80(4):1874-1885.
We established a method for production of recombinant adeno-associated virus type 5 (rAAV5) in insect cells by use of baculovirus expression vectors. One baculovirus harbors a transgene between the inverted terminal repeat sequences of type 5, and the second expresses Rep78 and Rep52. Interestingly, the replacement of type 5 Rep52 with type 1 Rep52 generated four times more rAAV5 particles. We replaced the N-terminal portion of type 5 VP1 with the equivalent portion of type 2 to generate infectious AAV5 particles. The rAAV5 with the modified VP1 required α2-3 sialic acid for transduction, as revealed by a competition experiment with an analog of α2-3 sialic acid. rAAV5-GFP/Neo with a 4.4-kb vector genome produced in HEK293 cells or Sf9 cells transduced COS cells with similar efficiencies. Surprisingly, Sf9-produced humanized Renilla green fluorescent protein (hGFP) vector with a 2.4-kb vector genome induced stronger GFP expression than the 293-produced one. Transduction of murine skeletal muscles with Sf9-generated rAAV5 with a 3.4-kb vector genome carrying a human secreted alkaline phosphatase (SEAP) expression cassette induced levels of SEAP more than 30 times higher than those for 293-produced vector 1 week after injection. Analysis of virion DNA revealed that in addition to a 2.4- or 3.4-kb single-stranded vector genome, Sf9-rAAV5 had more-abundant forms of approximately 4.7 kb, which appeared to correspond to the monomer duplex form of hGFP vector or truncated monomer duplex SEAP vector DNA. These results indicated that rAAV5 can be generated in insect cells, although the difference in incorporated virion DNA may induce different expression patterns of the transgene.
PMCID: PMC1367135  PMID: 16439543
11.  Immunological Aspects of Recombinant Adeno-Associated Virus Delivery to the Mammalian Brain 
Journal of Virology  2002;76(16):8446-8454.
Recombinant adeno-associated viruses (rAAV) are highly efficient vectors for gene delivery into the central nervous system (CNS). However, host inflammatory and immune responses may play a critical role in limiting the use of rAAV vectors for gene therapy and functional genomic studies in vivo. Here, we evaluated the effect of repeated injections of five rAAV vectors expressing different genetic sequences (coding or noncoding) in a range of combinations into the rat brain. Specifically, we wished to determine whether a specific immune or inflammatory response appeared in response to the vector and/or the transgene protein after repeated injections under conditions of mannitol coinjection. We show that readministration of the same rAAV to the CNS is possible if the interval between the first and second injection is more than 4 weeks. Furthermore, our data demonstrate that rAAV vectors carrying different genetic sequences can be administered at intervals of 2 weeks. Our data therefore suggest that the AAV capsid structure is altered by the vector genetic sequence, such that secondary structures of the single-stranded genome have an impact on the antigenicity of the virus. This study provides guidelines for more rational design of gene transfer studies in the rodent brain and, in addition, suggests the use of repeated administration of rAAV as a viable form of therapy for the treatment of chronic diseases.
PMCID: PMC155154  PMID: 12134047
12.  Biochemical Characterization of Junonia coenia Densovirus Nonstructural Protein NS-1 
Journal of Virology  2002;76(1):338-345.
Junonia coenia densovirus (JcDNV) is an autonomous parvovirus that infects the larvae of the common buckeye butterfly, Junonia coenia. Unlike vertebrate parvoviruses, the genes encoding the structural protein and nonstructural (NS) proteins of JcDNV are in opposite orientations; thus, each strand contains a sense and antisense open reading frame (ORF). The promoter at map position 93 controls expression of NS ORFs 2, 3, and 4, which encode three NS proteins, NS-1, NS-2, and NS-3. These proteins are likely to be involved in viral DNA replication, among other functions. In contrast to the nonstructural proteins of the vertebrate parvoviruses, the NS proteins of the Densovirinae have not been characterized. Here, we describe biochemical properties of the NS-1 protein of JcDNV. The NS-1 ORF was cloned in frame with the Escherichia coli malE gene, which encodes the bacterial maltose binding protein (MBP). Using electrophoretic mobility shift and DNase I protection assays, we identified the region of the JcDNV terminal sequence that is recognized specifically by the MBP-NS-1 fusion protein. The site consists of (GAC)4 and is located on the A-A′ region of the terminal palindrome. In addition, the MBP-NS-1 fusion protein catalyzes the cleavage of single-stranded DNA (ssDNA) substrates derived from the JcDNV putative origin of replication, primarily at two sites in the motif 5′-G*TAT*TG-3′. One cleavage site is between the thymidine dinucleotide at positions 92 and 93 and the other site corresponds to thymidine at nucleotide 95; both sites are on the complementary strand of the sequence assigned GenBank accession number A12984. Cleavage of ssDNA is dependent on the presence of a divalent metal cofactor but does not require nucleoside triphosphate hydrolysis. Parvovirus NS proteins contain the phylogenically conserved Walker A- and B-site ATPase motifs. These sites in JcDNV NS-1 diverge from the consensus, yet despite these atypical motifs our analyses support that MBP-NS-1 has ATP-dependent helicase activity. These results indicate that JcDNV NS-1 possesses activities common to the superfamily of rolling-circle replication initiator proteins in general and the parvovirus replication proteins in particular, and they provide a basis for comparative analyses of the structure and function relationships among the parvovirus NS-1 equivalents.
PMCID: PMC135713  PMID: 11739698
13.  Adeno-Associated Virus Type 2 Rep78 Induces Apoptosis through Caspase Activation Independently of p53 
Journal of Virology  2000;74(20):9441-9450.
Adeno-associated virus (AAV) type 2 Rep78 is a multifunctional protein required for AAV DNA replication, integration, and gene regulation. The biochemical activities of Rep78 have been described, but the effects of Rep proteins on the cell have not been characterized. We have analyzed Rep-mediated cytotoxicity. We demonstrated that Rep78 expression is sufficient to induce cell death and disruption of the cell cycle. Cell death was found to be mediated by apoptosis. Rep78 expression resulted in the activation of caspase-3, a terminal caspase directly involved in the execution of cell death. A peptidic inhibitor of caspase-3, Z-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK), abrogated Rep78-induced apoptosis, indicating that Rep78-mediated apoptosis is caspase-3 dependent. Rep78 induced apoptosis in wild-type p53-containing human embryonal carcinoma NT-2 cells and in p53-null promyelocytic human HL-60 cells, indicating that at least one pathway of Rep78-induced apoptosis is p53 independent. Apoptosis was shown to occur during the G1 and early S phases of the cell cycle. By analyzing the effects of Rep78 mutations on cell viability, the cause of cell death was attributed in part to two biochemical activities of Rep78, DNA binding and ATPase/helicase activity. The endonuclease activity of Rep78 did not contribute to apoptosis induction.
PMCID: PMC112373  PMID: 11000213
14.  An Adeno-Associated Virus (AAV) Initiator Protein, Rep78, Catalyzes the Cleavage and Ligation of Single-Stranded AAV ori DNA 
Journal of Virology  2000;74(7):3122-3129.
The Rep78 protein of adeno-associated virus (AAV) contains amino acid sequence motifs common to rolling-circle replication (RCR) initiator proteins. In this report, we describe RCR initiator-like activities of Rep78. We demonstrate that a maltose-binding protein (MBP)–Rep78 fusion protein can catalyze the cleavage and ligation of single-stranded DNA substrates derived from the AAV origin of replication. Rep-mediated single-stranded DNA cleavage was strictly dependent on the presence of certain divalent cations (e.g., Mn2+ or Mg2+) but did not require the presence of a nucleoside triphosphate cofactor. Electrophoretic mobility shift assays demonstrated that binding of single-stranded DNA by MBP-Rep78 was influenced by the length of the substrate as well as the presence of potential single-stranded cis-acting sequence elements. Site-directed mutagenesis was used to examine the role of specific tyrosine residues within a conserved RCR motif (motif 3) of Rep78. Replacement of Tyr-156 with phenylalanine abolished the ability of MBP-Rep78 to mediate the cleavage and ligation of single-stranded DNA substrates but not the ability to stably bind single-stranded DNA. The cleaving-joining activity of Rep78 is consistent with the mechanism of replicative intermediate dimer resolution proposed for the autonomous parvoviruses and may have implications for targeted integration of recombinant AAV vectors.
PMCID: PMC111811  PMID: 10708427
15.  Adeno-Associated Virus Type 5 (AAV5) but Not AAV2 Binds to the Apical Surfaces of Airway Epithelia and Facilitates Gene Transfer 
Journal of Virology  2000;74(8):3852-3858.
In the genetic disease cystic fibrosis, recombinant adeno-associated virus type 2 (AAV2) is being investigated as a vector to transfer CFTR cDNA to airway epithelia. However, earlier work has shown that the apical surface of human airway epithelia is resistant to infection by AAV2, presumably as a result of a lack of heparan sulfate proteoglycans on the apical surface. This inefficiency can be overcome by increasing the amount of vector or by increasing the incubation time. However, these interventions are not very practical for translation into a therapeutic airway-directed vector. Therefore, we examined the efficiency of other AAV serotypes at infecting human airway epithelia. When applied at low multiplicity of infection to the apical surface of differentiated airway epithelia we found that a recombinant AAV5 bound and mediated gene transfer 50-fold more efficiently than AAV2. Furthermore, in contrast to AAV2, AAV5-mediated gene transfer was not inhibited by soluble heparin. Recombinant AAV5 was also more efficient than AAV2 in transferring β-galactosidase cDNA to murine airway and alveolar epithelia in vivo. These data suggest that AAV5-derived vectors bind and mediate gene transfer to human and murine airway epithelia, and the tropism of AAV5 may be useful to target cells that are not permissive for AAV2.
PMCID: PMC111893  PMID: 10729159
16.  Adeno-Associated Virus (AAV) Type 5 Rep Protein Cleaves a Unique Terminal Resolution Site Compared with Other AAV Serotypes 
Journal of Virology  1999;73(5):4293-4298.
Adeno-associated virus (AAV) replication depends on two viral components for replication: the AAV nonstructural proteins (Rep) in trans, and inverted terminal repeat (ITR) sequences in cis. AAV type 5 (AAV5) is a distinct virus compared to the other cloned AAV serotypes. Whereas the Rep proteins and ITRs of other serotypes are interchangeable and can be used to produce recombinant viral particles of a different serotype, AAV5 Rep proteins cannot cross-complement in the packaging of a genome with an AAV2 ITR. In vitro replication assays indicated that the block occurs at the level of replication instead of at viral assembly. AAV2 and AAV5 Rep binding activities demonstrate similar affinities for either an AAV2 or AAV5 ITR; however, comparison of terminal resolution site (TRS) endonuclease activities showed a difference in specificity for the two DNA sequences. AAV2 Rep78 cleaved only a type 2 ITR DNA sequence, and AAV5 Rep78 cleaved only a type 5 probe efficiently. Mapping of the AAV5 ITR TRS identified a distinct cleavage site (AGTG TGGC) which is absent from the ITRs of other AAV serotypes. Comparison of the TRSs in the AAV2 ITR, the AAV5 ITR, and the AAV chromosome 19 integration locus identified some conserved nucleotides downstream of the cleavage site but little homology upstream.
PMCID: PMC104210  PMID: 10196327
17.  Cloning and Characterization of Adeno-Associated Virus Type 5 
Journal of Virology  1999;73(2):1309-1319.
Adeno-associated virus type 5 (AAV5) is distinct from other dependovirus serotypes based on DNA hybridization and serological data. To better understand the biology of AAV5, we have cloned and sequenced its genome and generated recombinant AAV5 particles. The single-stranded DNA genome is similar in length and genetic organization to that of AAV2. The rep gene of AAV5 is 67% homologous to AAV2, with the majority of the changes occurring in the carboxyl and amino termini. This homology is much less than that observed with other reported AAV serotypes. The inverted terminal repeats (ITRs) are also unique compared to those of the other AAV serotypes. While the characteristic AAV hairpin structure and the Rep DNA binding site are retained, the consensus terminal resolution site is absent. These differences in the Rep proteins and the ITRs result in a lack of cross-complementation between AAV2 and AAV5 as measured by the production of recombinant AAV particles. Alignment of the cap open reading frame with that of the other AAV serotypes identifies both conserved and variable regions which could affect tissue tropism and particle stability. Comparison of transduction efficiencies in a variety of cells lines and a lack of inhibition by soluble heparin indicate that AAV5 may utilize a distinct mechanism of uptake compared to AAV2.
PMCID: PMC103955  PMID: 9882336
18.  Inhibition of PrKX, a Novel Protein Kinase, and the Cyclic AMP-Dependent Protein Kinase PKA by the Regulatory Proteins of Adeno-Associated Virus Type 2 
Molecular and Cellular Biology  1998;18(10):5921-5929.
Adeno-associated virus encodes four nonstructural proteins, which are known as Rep78, Rep68, Rep52, and Rep40. Expression of these nonstructural proteins affects cell growth and gene expression through processes that have not yet been characterized. Using a yeast two-hybrid screen, we have demonstrated that a stable interaction occurs between the viral proteins Rep78 and Rep52 and the putative protein kinase PrKX, which is encoded on the X chromosome. The stability and specificity of the Rep-PrKX interaction were confirmed by coimmunoprecipitation of complexes assembled in vitro and in vivo. Overexpressed PrKX, which was purified from cos cells, was shown to phosphorylate a synthetic protein kinase A (PKA) substrate. However, this activity was dramatically inhibited by stoichiometric amounts of Rep52 and weakly inhibited with Rep68, which lacks the carboxy-terminal sequence contained in Rep52. Similarly, a stable interaction was observed with Rep78, which also contains the carboxy-terminal sequence of Rep52. A stable interaction and inhibition were also observed between Rep52 and the catalytic subunit of PKA. By using surface plasmon resonance and kinetic studies, Kis of approximately 300 and 167 nM were calculated for Rep52 with PKA and with PrKX, respectively. Thus, Rep52 but not Rep68 can significantly inhibit the trans- and autophosphorylation activities of these kinases. The biological effects of Rep78-specific inhibition of PKA-responsive genes are illustrated by the reduction of steady-state levels of cyclic AMP-responsive-element-binding protein and cyclin A protein.
PMCID: PMC109178  PMID: 9742109
19.  The Rep52 Gene Product of Adeno-Associated Virus Is a DNA Helicase with 3′-to-5′ Polarity 
Journal of Virology  1998;72(6):4874-4881.
The rep gene of adeno-associated virus type 2 encodes four overlapping proteins from two separate promoters, termed P5 and P19. The P5-promoted Rep proteins, Rep78 and Rep68, are essential for viral DNA replication, and a wealth of data concerning the biochemical activities of these proteins has been reported. In contrast, data concerning the biochemical functions of the P19-promoted Rep proteins, Rep52 and Rep40, are lacking. Here, we describe enzymatic activities associated with a bacterially expressed maltose-binding protein (MBP)-Rep52 fusion protein. Purified MBP-Rep52 possesses 3′-to-5′ DNA helicase activity that is strictly dependent upon the presence of nucleoside triphosphate and divalent cation cofactors. In addition, MBP-Rep52 demonstrates a constitutive ATPase activity that is active in the absence of DNA effector molecules. An MBP-Rep52 chimera bearing a lysine-to-histidine substitution at position 116 (K116H) within a consensus helicase- and ATPase-associated motif (motif I or Walker A site) was deficient for both DNA helicase and ATPase activities. In contrast to a Rep78 A-site mutant protein bearing a corresponding amino acid substitution at position 340 (K340H), the MBP-Rep52 A-site mutant protein failed to exhibit a trans-dominant negative effect when it was mixed with wild-type MBP-Rep52 or MBP-Rep78 in vitro. This lack of trans dominance, coupled with the results of coimmunoprecipitation and gel filtration chromatography experiments reported here, suggests that the ability of Rep52 to engage in multimeric interactions may differ from that of Rep78 or -68.
PMCID: PMC110039  PMID: 9573254

Results 1-19 (19)