PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (89)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Draft Genome of Australian Environmental Strain WM 09.24 of the Opportunistic Human Pathogen Scedosporium aurantiacum 
Genome Announcements  2015;3(1):e01526-14.
We report here the first genome assembly and annotation of the human-pathogenic fungus Scedosporium aurantiacum, with a predicted 10,525 genes, and 11,661 transcripts. The strain WM 09.24 was isolated from the environment at Circular Quay, Sydney, New South Wales, Australia.
doi:10.1128/genomeA.01526-14
PMCID: PMC4333655  PMID: 25676755
2.  The EcoCyc Database 
EcoSal Plus  2014;2014:10.1128/ecosalplus.ESP-0009-2013.
EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists, and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene, metabolite, reaction, operon, and metabolic pathway. The database also includes information on E. coli gene essentiality, and on nutrient conditions that do or do not support the growth of E. coli. The web site and downloadable software contain tools for analysis of high-throughput datasets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. This chapter provides a detailed description of the data content of EcoCyc, and of the procedures by which this content is generated.
doi:10.1128/ecosalplus.ESP-0009-2013
PMCID: PMC4243172  PMID: 25431773
3.  Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii 
BMC Genomics  2014;15(1):1020.
Background
Acinetobacter baumannii is a significant hospital pathogen, particularly due to the dissemination of highly multidrug resistant isolates. Genome data have revealed that A. baumannii is highly genetically diverse, which correlates with major variations seen at the phenotypic level. Thus far, comparative genomic studies have been aimed at identifying resistance determinants in A. baumannii. In this study, we extend and expand on these analyses to gain greater insight into the virulence factors across eight A. baumannii strains which are clonally, temporally and geographically distinct, and includes an isolate considered non-pathogenic and a community-acquired A. baumannii.
Results
We have identified a large number of genes in the A. baumannii genomes that are known to play a role in virulence in other pathogens, such as the recently studied proline-alanine-alanine-arginine (PAAR)-repeat domains of the type VI secretion systems. Not surprising, many virulence candidates appear to be part of the A. baumannii core genome of virulent isolates but were often found to be insertionally disrupted in the avirulent A. baumannii strain SDF. Our study also reveals that many known or putative virulence determinants are restricted to specific clonal lineages, which suggests that these virulence determinants may be crucial for the success of these widespread common clones. It has previously been suggested that the high level of intrinsic and adaptive resistance has enabled the widespread presence of A. baumannii in the hospital environment. This appears to have facilitated the expansion of its repertoire of virulence traits, as in general, the nosocomial strains in this study possess more virulence genes compared to the community-acquired isolate.
Conclusions
Major genetic variation in known or putative virulence factors was seen across the eight strains included in this study, suggesting that virulence mechanisms are complex and multifaceted in A. baumannii. Overall, these analyses increase our understanding of A. baumannii pathogenicity and will assist in future studies determining the significance of virulence factors within clonal lineages and/or across the species.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-1020) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-1020
PMCID: PMC4256060  PMID: 25422040
Genomics; Virulome; Type VI secretion systems; Membrane
4.  Draft Genome Sequence of Bacillus alcalophilus AV1934, a Classic Alkaliphile Isolated from Human Feces in 1934 
Genome Announcements  2014;2(6):e01175-14.
Bacillus alcalophilus AV1934, isolated from human feces, was described in 1934 before microbiome studies and recent indications of novel potassium ion coupling to motility in this extremophile. Here, we report draft sequences that will facilitate an examination of whether that coupling is part of a larger cycle of potassium ion-coupled transporters.
doi:10.1128/genomeA.01175-14
PMCID: PMC4241669  PMID: 25395643
5.  Structure of a short-chain dehydrogenase/reductase (SDR) within a genomic island from a clinical strain of Acinetobacter baumannii  
The structure of a short-chain dehydrogenase encoded within genomic islands of A. baumannii strains has been solved to 2.4 Å resolution. This classical SDR incorporates a flexible helical subdomain. The NADP-binding site and catalytic side chains are identified.
Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Å resolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. The enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access.
doi:10.1107/S2053230X14019785
PMCID: PMC4188072  PMID: 25286932
opportunistic pathogen; Acinetobacter baumannii WM99c; nosocomial strain; multidrug resistance; Rossmann fold
7.  Addition of Escherichia coli K-12 Growth Observation and Gene Essentiality Data to the EcoCyc Database 
Journal of Bacteriology  2014;196(5):982-988.
The sets of compounds that can support growth of an organism are defined by the presence of transporters and metabolic pathways that convert nutrient sources into cellular components and energy for growth. A collection of known nutrient sources can therefore serve both as an impetus for investigating new metabolic pathways and transporters and as a reference for computational modeling of known metabolic pathways. To establish such a collection for Escherichia coli K-12, we have integrated data on the growth or nongrowth of E. coli K-12 obtained from published observations using a variety of individual media and from high-throughput phenotype microarrays into the EcoCyc database. The assembled collection revealed a substantial number of discrepancies between the high-throughput data sets, which we investigated where possible using low-throughput growth assays on soft agar and in liquid culture. We also integrated six data sets describing 16,119 observations of the growth of single-gene knockout mutants of E. coli K-12 into EcoCyc, which are relevant to antimicrobial drug design, provide clues regarding the roles of genes of unknown function, and are useful for validating metabolic models. To make this information easily accessible to EcoCyc users, we developed software for capturing, querying, and visualizing cellular growth assays and gene essentiality data.
doi:10.1128/JB.01209-13
PMCID: PMC3957686  PMID: 24363340
8.  SecDF as Part of the Sec-Translocase Facilitates Efficient Secretion of Bacillus cereus Toxins and Cell Wall-Associated Proteins 
PLoS ONE  2014;9(8):e103326.
The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ΔsecDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system.
doi:10.1371/journal.pone.0103326
PMCID: PMC4118872  PMID: 25083861
9.  A genome-scale metabolic flux model of Escherichia coli K–12 derived from the EcoCyc database 
BMC Systems Biology  2014;8:79.
Background
Constraint-based models of Escherichia coli metabolic flux have played a key role in computational studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We also sought to compare model predictions with experimental data to highlight open questions in E. coli biology.
Results
We present EcoCyc–18.0–GEM, a genome-scale model of the E. coli K–12 MG1655 metabolic network. The model is automatically generated from the current state of EcoCyc using the MetaFlux software, enabling the release of multiple model updates per year. EcoCyc–18.0–GEM encompasses 1445 genes, 2286 unique metabolic reactions, and 1453 unique metabolites. We demonstrate a three-part validation of the model that breaks new ground in breadth and accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from chemostat culture and simulation results from the E. coli modeling literature. (ii) Essentiality prediction for the 1445 genes represented in the model, in which EcoCyc–18.0–GEM achieves an improved accuracy of 95.2% in predicting the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media conditions, for which the model achieves an overall accuracy of 80.7%. The model’s derivation from EcoCyc enables query and visualization via the EcoCyc website, facilitating model reuse and validation by inspection. We present an extensive investigation of disagreements between EcoCyc–18.0–GEM predictions and experimental data to highlight areas of interest to E. coli modelers and experimentalists, including 70 incorrect predictions of gene essentiality on glucose, 80 incorrect predictions of gene essentiality on glycerol, and 83 incorrect predictions of nutrient utilization.
Conclusion
Significant advantages can be derived from the combination of model organism databases and flux balance modeling represented by MetaFlux. Interpretation of the EcoCyc database as a flux balance model results in a highly accurate metabolic model and provides a rigorous consistency check for information stored in the database.
doi:10.1186/1752-0509-8-79
PMCID: PMC4086706  PMID: 24974895
Escherichia coli; Flux balance analysis; Constraint-based modeling; Metabolic network reconstruction; Metabolic modeling; Genome-scale model; Gene essentiality; Systems biology; EcoCyc; Pathway Tools
10.  Genome Sequence of the Neurotoxigenic Clostridium butyricum Strain 5521 
Genome Announcements  2014;2(3):e00632-14.
Clostridium strains from six phylogenetic groups, C. botulinum groups I to IV, C. baratii, and C. butyricum, display the capacity to produce botulinum neurotoxin. Here, we present the genome sequence of a C. butyricum isolate, the neurotoxigenic strain 5521, which encodes the type E botulinum neurotoxin.
doi:10.1128/genomeA.00632-14
PMCID: PMC4073117  PMID: 24970833
11.  Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach 
Biology Letters  2013;9(3):20121153.
In addition to harbouring intestinal symbionts, some animal species also possess intracellular symbiotic microbes. The relative contributions of gut-resident and intracellular symbionts to host metabolism, and how they coevolve are not well understood. Cockroaches and the termite Mastotermes darwiniensis present a unique opportunity to examine the evolution of spatially separated symbionts, as they harbour gut symbionts and the intracellular symbiont Blattabacterium cuenoti. The genomes of B. cuenoti from M. darwiniensis and the social wood-feeding cockroach Cryptocercus punctulatus are each missing most of the pathways for the synthesis of essential amino acids found in the genomes of relatives from non-wood-feeding hosts. Hypotheses to explain this pathway degradation include: (i) feeding on microbes present in rotting wood by ancestral hosts; (ii) the evolution of high-fidelity transfer of gut microbes via social behaviour. To test these hypotheses, we sequenced the B. cuenoti genome of a third wood-feeding species, the phylogenetically distant and non-social Panesthia angustipennis. We show that host wood-feeding does not necessarily lead to degradation of essential amino acid synthesis pathways in B. cuenoti, and argue that ancestral high-fidelity transfer of gut microbes best explains their loss in strains from M. darwiniensis and C. punctulatus.
doi:10.1098/rsbl.2012.1153
PMCID: PMC3645023  PMID: 23515978
mutualism; termite; genome degradation
12.  Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism 
The ISME Journal  2013;7(6):1227-1236.
Beneath Australia's large, dry Nullarbor Plain lies an extensive underwater cave system, where dense microbial communities known as ‘slime curtains' are found. These communities exist in isolation from photosynthetically derived carbon and are presumed to be chemoautotrophic. Earlier work found high levels of nitrite and nitrate in the cave waters and a high relative abundance of Nitrospirae in bacterial 16S rRNA clone libraries. This suggested that these communities may be supported by nitrite oxidation, however, details of the inorganic nitrogen cycling in these communities remained unclear. Here we report analysis of 16S rRNA amplicon and metagenomic sequence data from the Weebubbie cave slime curtain community. The microbial community is comprised of a diverse assortment of bacterial and archaeal genera, including an abundant population of Thaumarchaeota. Sufficient thaumarchaeotal sequence was recovered to enable a partial genome sequence to be assembled, which showed considerable synteny with the corresponding regions in the genome of the autotrophic ammonia oxidiser Nitrosopumilus maritimus SCM1. This partial genome sequence, contained regions with high sequence identity to the ammonia mono-oxygenase operon and carbon fixing 3-hydroxypropionate/4-hydroxybutyrate cycle genes of N. maritimus SCM1. Additionally, the community, as a whole, included genes encoding key enzymes for inorganic nitrogen transformations, including nitrification and denitrification. We propose that the Weebubbie slime curtain community represents a distinctive microbial ecosystem, in which primary productivity is due to the combined activity of archaeal ammonia-oxidisers and bacterial nitrite oxidisers.
doi:10.1038/ismej.2013.14
PMCID: PMC3660674  PMID: 23426011
ammonia oxidising archaea (AOA); chemolithotrophy; metagenomics; microbial community; nitrogen cycling; Nullarbor caves
13.  pA506, a Conjugative Plasmid of the Plant Epiphyte Pseudomonas fluorescens A506 
Applied and Environmental Microbiology  2013;79(17):5272-5282.
Conjugative plasmids are known to facilitate the acquisition and dispersal of genes contributing to the fitness of Pseudomonas spp. Here, we report the characterization of pA506, the 57-kb conjugative plasmid of Pseudomonas fluorescens A506, a plant epiphyte used in the United States for the biological control of fire blight disease of pear and apple. Twenty-nine of the 67 open reading frames (ORFs) of pA506 have putative functions in conjugation, including a type IV secretion system related to that of MOBP6 family plasmids and a gene cluster for type IV pili. We demonstrate that pA506 is self-transmissible via conjugation between A506 and strains of Pseudomonas spp. or the Enterobacteriaceae. The origin of vegetative replication (oriV) of pA506 is typical of those in pPT23A family plasmids, which are present in many pathovars of Pseudomonas syringae, but pA506 lacks repA, a defining locus for pPT23A plasmids, and has a novel partitioning region. We selected a plasmid-cured derivative of A506 and compared it to the wild type to identify plasmid-encoded phenotypes. pA506 conferred UV resistance, presumably due to the plasmid-borne rulAB genes, but did not influence epiphytic fitness of A506 on pear or apple blossoms in the field. pA506 does not appear to confer resistance to antibiotics or other toxic elements. Based on the conjugative nature of pA506 and the large number of its genes that are shared with plasmids from diverse groups of environmental bacteria, the plasmid is likely to serve as a vehicle for genetic exchange between A506 and its coinhabitants on plant surfaces.
doi:10.1128/AEM.01354-13
PMCID: PMC3753976  PMID: 23811504
14.  H-NS Plays a Role in Expression of Acinetobacter baumannii Virulence Features 
Infection and Immunity  2013;81(7):2574-2583.
Acinetobacter baumannii has become a major problem in the clinical setting with the prevalence of infections caused by multidrug-resistant strains on the increase. Nevertheless, only a limited number of molecular mechanisms involved in the success of A. baumannii as a human pathogen have been described. In this study, we examined the virulence features of a hypermotile derivative of A. baumannii strain ATCC 17978, which was found to display enhanced adherence to human pneumocytes and elevated levels of lethality toward Caenorhabditis elegans nematodes. Analysis of cellular lipids revealed modifications to the fatty acid composition, providing a possible explanation for the observed changes in hydrophobicity and subsequent alteration in adherence and motility. Comparison of the genome sequences of the hypermotile variant and parental strain revealed that an insertion sequence had disrupted an hns-like gene in the variant. This gene encodes a homologue of the histone-like nucleoid structuring (H-NS) protein, a known global transcriptional repressor. Transcriptome analysis identified the global effects of this mutation on gene expression, with major changes seen in the autotransporter Ata, a type VI secretion system, and a type I pilus cluster. Interestingly, isolation and analysis of a second independent hypermotile ATCC 17978 variant revealed a mutation to a residue within the DNA binding region of H-NS. Taken together, these mutants indicate that the phenotypic and transcriptomic differences seen are due to loss of regulatory control effected by H-NS.
doi:10.1128/IAI.00065-13
PMCID: PMC3697591  PMID: 23649094
15.  Genome sequence of the human malaria parasite Plasmodium falciparum 
Nature  2002;419(6906):10.1038/nature01097.
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.
doi:10.1038/nature01097
PMCID: PMC3836256  PMID: 12368864
16.  Sequences of Two Related Multiple Antibiotic Resistance Virulence Plasmids Sharing a Unique IS26-Related Molecular Signature Isolated from Different Escherichia coli Pathotypes from Different Hosts 
PLoS ONE  2013;8(11):e78862.
Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance gene locus. Comparative sequence analysis of these closely related plasmids reveals aspects of plasmid evolution in pathogenic E. coli from different hosts.
doi:10.1371/journal.pone.0078862
PMCID: PMC3817090  PMID: 24223859
17.  Effect of Tannic Acid on the Transcriptome of the Soil Bacterium Pseudomonas protegens Pf-5 
Tannins are a diverse group of plant-produced, polyphenolic compounds with metal-chelating and antimicrobial properties that are prevalent in many soils. Using transcriptomics, we determined that tannic acid, a form of hydrolysable tannin, broadly affects the expression of genes involved in iron and zinc homeostases, sulfur metabolism, biofilm formation, motility, and secondary metabolite biosynthesis in the soil- and rhizosphere-inhabiting bacterium Pseudomonas protegens Pf-5.
doi:10.1128/AEM.03101-12
PMCID: PMC3623135  PMID: 23435890
18.  Dead End Metabolites - Defining the Known Unknowns of the E. coli Metabolic Network  
PLoS ONE  2013;8(9):e75210.
The EcoCyc database is an online scientific database which provides an integrated view of the metabolic and regulatory network of the bacterium Escherichia coli K-12 and facilitates computational exploration of this important model organism. We have analysed the occurrence of dead end metabolites within the database – these are metabolites which lack the requisite reactions (either metabolic or transport) that would account for their production or consumption within the metabolic network. 127 dead end metabolites were identified from the 995 compounds that are contained within the EcoCyc metabolic network. Their presence reflects either a deficit in our representation of the network or in our knowledge of E. coli metabolism. Extensive literature searches resulted in the addition of 38 transport reactions and 3 metabolic reactions to the database and led to an improved representation of the pathway for Vitamin B12 salvage. 39 dead end metabolites were identified as components of reactions that are not physiologically relevant to E. coli K-12 – these reactions are properties of purified enzymes in vitro that would not be expected to occur in vivo. Our analysis led to improvements in the software that underpins the database and to the program that finds dead end metabolites within EcoCyc. The remaining dead end metabolites in the EcoCyc database likely represent deficiencies in our knowledge of E. coli metabolism.
doi:10.1371/journal.pone.0075210
PMCID: PMC3781023  PMID: 24086468
19.  Impact of DNA damaging agents on genome-wide transcriptional profiles in two marine Synechococcus species 
Marine microorganisms, particularly those residing in coastal areas, may come in contact with any number of chemicals of environmental or xenobiotic origin. The sensitivity and response of marine cyanobacteria to such chemicals is, at present, poorly understood. We have looked at the transcriptional response of well characterized Synechococcus open ocean (WH8102) and coastal (CC9311) isolates to two DNA damaging agents, mitomycin C and ethidium bromide, using whole-genome expression microarrays. The coastal strain showed differential regulation of a larger proportion of its genome following “shock” treatment with each agent. Many of the orthologous genes in these strains, including those encoding sensor kinases, showed different transcriptional responses, with the CC9311 genes more likely to show significant changes in both treatments. While the overall response of each strain was considerably different, there were distinct transcriptional responses common to both strains observed for each DNA damaging agent, linked to the mode of action of each chemical. In both CC9311 and WH8102 there was evidence of SOS response induction under mitomycin C treatment, with genes recA, lexA and umuC significantly upregulated in this experiment but not under ethidium bromide treatment. Conversely, ethidium bromide treatment tended to result in upregulation of the DNA-directed RNA polymerase genes, not observed following mitomycin C treatment. Interestingly, a large number of genes residing on putative genomic island regions of each genome also showed significant upregulation under one or both chemical treatments.
doi:10.3389/fmicb.2013.00232
PMCID: PMC3744912  PMID: 23966990
cyanobacteria; Synechococcus; transcriptome; microarray; toxic stress; ethidium bromide; mitomycin C; DNA damage
20.  pEl1573 Carrying blaIMP-4, from Sydney, Australia, Is Closely Related to Other IncL/M Plasmids 
Antimicrobial Agents and Chemotherapy  2012;56(11):6029-6032.
Complete sequencing of pEl1573, a representative IncL/M plasmid carrying blaIMP-4 from Sydney, Australia, revealed an ∼60-kb backbone almost identical to those of IncL/M plasmids pCTX-M3, from Poland, and pCTX-M360, from China, and less closely related to pNDM-HK, pOXA-48a, and pEL60, suggesting different lineages. The ∼28-kb Tn2-derived multiresistance region in pEl1573 is inserted in the same location as those in pCTX-M3 and pNDM-HK and shares some of the same components but has undergone rearrangements.
doi:10.1128/AAC.01189-12
PMCID: PMC3486572  PMID: 22926566
21.  The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii 
PLoS ONE  2013;8(3):e58628.
Many sequenced strains of Acinetobacter baumannii are established nosocomial pathogens capable of resistance to multiple antimicrobials. Community-acquired A. baumannii in contrast, comprise a minor proportion of all A. baumannii infections and are highly susceptible to antimicrobial treatment. However, these infections also present acute clinical manifestations associated with high reported rates of mortality. We report the complete 3.70 Mbp genome of A. baumannii D1279779, previously isolated from the bacteraemic infection of an Indigenous Australian; this strain represents the first community-acquired A. baumannii to be sequenced. Comparative analysis of currently published A. baumannii genomes identified twenty-four accessory gene clusters present in D1279779. These accessory elements were predicted to encode a range of functions including polysaccharide biosynthesis, type I DNA restriction-modification, and the metabolism of novel carbonaceous and nitrogenous compounds. Conversely, twenty genomic regions present in previously sequenced A. baumannii strains were absent in D1279779, including gene clusters involved in the catabolism of 4-hydroxybenzoate and glucarate, and the A. baumannii antibiotic resistance island, known to bestow resistance to multiple antimicrobials in nosocomial strains. Phenomic analysis utilising the Biolog Phenotype Microarray system indicated that A. baumannii D1279779 can utilise a broader range of carbon and nitrogen sources than international clone I and clone II nosocomial isolates. However, D1279779 was more sensitive to antimicrobial compounds, particularly beta-lactams, tetracyclines and sulphonamides. The combined genomic and phenomic analyses have provided insight into the features distinguishing A. baumannii isolated from community-acquired and nosocomial infections.
doi:10.1371/journal.pone.0058628
PMCID: PMC3602452  PMID: 23527001
22.  Genome Sequence of the Group III Clostridium botulinum Strain Eklund-C 
Genome Announcements  2013;1(2):e00044-13.
The neurotoxins produced by Clostridium botulinum strains are among the world’s most potent toxins and are the causative agents of paralytic botulism. Here, we present the draft genome sequence of the group III C. botulinum strain Eklund-C, including a pseudolysogen-like bacteriophage that harbors the type C neurotoxin operon.
doi:10.1128/genomeA.00044-13
PMCID: PMC3622972  PMID: 23516187
23.  Single-Step Selection of Drug Resistant Acinetobacter baylyi ADP1 Mutants Reveals a Functional Redundancy in the Recruitment of Multidrug Efflux Systems 
PLoS ONE  2013;8(2):e56090.
Members of the genus Acinetobacter have been the focus recent attention due to both their clinical significance and application to molecular biology. The soil commensal bacterium Acinetobacter baylyi ADP1 has been proposed as a model system for molecular and genetic studies, whereas in a clinical environment, Acinetobacter spp. are of increasing importance due to their propensity to cause serious and intractable systemic infections. Clinically, a major factor in the success of Acinetobacter spp. as opportunistic pathogens can be attributed to their ability to rapidly evolve resistance to common antimicrobial compounds. Whole genome sequencing of clinical and environmental Acinetobacter spp. isolates has revealed the presence of numerous multidrug transporters within the core and accessory genomes, suggesting that efflux is an important host defense response in this genus. In this work, we used the drug-susceptible organism A. baylyi ADP1 as a model for studies into the evolution of efflux mediated resistance in genus Acinetobacter, due to the high level of conservation of efflux determinants across four diverse Acinetobacter strains, including clinical isolates. A single exposure of therapeutic concentrations of chloramphenicol to populations of A. baylyi ADP1 cells produced five individual colonies displaying multidrug resistance. The major facilitator superfamily pump craA was upregulated in one mutant strain, whereas the resistance nodulation division pump adeJ was upregulated in the remaining four. Within the adeJ upregulated population, two different levels of adeJ mRNA transcription were observed, suggesting at least three separate mutations were selected after single-step exposure to chloramphenicol. In the craA upregulated strain, a T to G substitution 12 nt upstream of the craA translation initiation codon was observed. Subsequent mRNA stability analyses using this strain revealed that the half-life of mutant craA mRNA was significantly greater than that of wild-type craA mRNA.
doi:10.1371/journal.pone.0056090
PMCID: PMC3567077  PMID: 23409126
24.  The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4 
Environmental microbiology  2011;13(12):3289-3309.
Summary
Bacillus pseudofirmus OF4 is an extreme but facultative alkaliphile that grows non-fermentatively in a pH range from 7.5 to above 11.4 and can withstand large sudden increases in external pH. It is a model organism for studies of bioenergetics at high pH, at which energy demands are higher than at neutral pH because both cytoplasmic pH homeostasis and ATP synthesis require more energy. The alkaliphile also tolerates a cytoplasmic pH > 9.0 at external pH values at which the pH homeostasis capacity is exceeded, and manages other stresses that are exacerbated at alkaline pH, e.g. sodium, oxidative and cell wall stresses. The genome of B. pseudofirmus OF4 includes two plasmids that are lost from some mutants without viability loss. The plasmids may provide a reservoir of mobile elements that promote adaptive chromosomal rearrangements under particular environmental conditions. The genome also reveals a more acidic pI profile for proteins exposed on the outer surface than found in neutralophiles. A large array of transporters and regulatory genes are predicted to protect the alkaliphile from its overlapping stresses. In addition, unanticipated metabolic versatility was observed, which could ensure requisite energy for alkaliphily under diverse conditions.
doi:10.1111/j.1462-2920.2011.02591.x
PMCID: PMC3228905  PMID: 21951522
25.  EcoCyc: fusing model organism databases with systems biology 
Nucleic Acids Research  2012;41(Database issue):D605-D612.
EcoCyc (http://EcoCyc.org) is a model organism database built on the genome sequence of Escherichia coli K-12 MG1655. Expert manual curation of the functions of individual E. coli gene products in EcoCyc has been based on information found in the experimental literature for E. coli K-12-derived strains. Updates to EcoCyc content continue to improve the comprehensive picture of E. coli biology. The utility of EcoCyc is enhanced by new tools available on the EcoCyc web site, and the development of EcoCyc as a teaching tool is increasing the impact of the knowledge collected in EcoCyc.
doi:10.1093/nar/gks1027
PMCID: PMC3531154  PMID: 23143106

Results 1-25 (89)