PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The EcoCyc Database 
EcoSal Plus  2014;2014:10.1128/ecosalplus.ESP-0009-2013.
EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists, and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene, metabolite, reaction, operon, and metabolic pathway. The database also includes information on E. coli gene essentiality, and on nutrient conditions that do or do not support the growth of E. coli. The web site and downloadable software contain tools for analysis of high-throughput datasets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. This chapter provides a detailed description of the data content of EcoCyc, and of the procedures by which this content is generated.
doi:10.1128/ecosalplus.ESP-0009-2013
PMCID: PMC4243172  PMID: 25431773
2.  The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases 
Nucleic Acids Research  2013;42(Database issue):D459-D471.
The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible database describing metabolic pathways and enzymes from all domains of life. MetaCyc pathways are experimentally determined, mostly small-molecule metabolic pathways and are curated from the primary scientific literature. MetaCyc contains >2100 pathways derived from >37 000 publications, and is the largest curated collection of metabolic pathways currently available. BioCyc (BioCyc.org) is a collection of >3000 organism-specific Pathway/Genome Databases (PGDBs), each containing the full genome and predicted metabolic network of one organism, including metabolites, enzymes, reactions, metabolic pathways, predicted operons, transport systems and pathway-hole fillers. Additions to BioCyc over the past 2 years include YeastCyc, a PGDB for Saccharomyces cerevisiae, and 891 new genomes from the Human Microbiome Project. The BioCyc Web site offers a variety of tools for querying and analysis of PGDBs, including Omics Viewers and tools for comparative analysis. New developments include atom mappings in reactions, a new representation of glycan degradation pathways, improved compound structure display, better coverage of enzyme kinetic data, enhancements of the Web Groups functionality, improvements to the Omics viewers, a new representation of the Enzyme Commission system and, for the desktop version of the software, the ability to save display states.
doi:10.1093/nar/gkt1103
PMCID: PMC3964957  PMID: 24225315
3.  Computing minimal nutrient sets from metabolic networks via linear constraint solving 
BMC Bioinformatics  2013;14:114.
Background
As more complete genome sequences become available, bioinformatics challenges arise in how to exploit genome sequences to make phenotypic predictions. One type of phenotypic prediction is to determine sets of compounds that will support the growth of a bacterium from the metabolic network inferred from the genome sequence of that organism.
Results
We present a method for computationally determining alternative growth media for an organism based on its metabolic network and transporter complement. Our method predicted 787 alternative anaerobic minimal nutrient sets for Escherichia coli K–12 MG1655 from the EcoCyc database. The program automatically partitioned the nutrients within these sets into 21 equivalence classes, most of which correspond to compounds serving as sources of carbon, nitrogen, phosphorous, and sulfur, or combinations of these essential elements. The nutrient sets were predicted with 72.5% accuracy as evaluated by comparison with 91 growth experiments. Novel aspects of our approach include (a) exhaustive consideration of all combinations of nutrients rather than assuming that all element sources can substitute for one another(an assumption that can be invalid in general) (b) leveraging the notion of a machinery-duplicating constraint, namely, that all intermediate metabolites used in active reactions must be produced in increasing concentrations to prevent successive dilution from cell division, (c) the use of Satisfiability Modulo Theory solvers rather than Linear Programming solvers, because our approach cannot be formulated as linear programming, (d) the use of Binary Decision Diagrams to produce an efficient implementation.
Conclusions
Our method for generating minimal nutrient sets from the metabolic network and transporters of an organism combines linear constraint solving with binary decision diagrams to efficiently produce solution sets to provided growth problems.
doi:10.1186/1471-2105-14-114
PMCID: PMC3644277  PMID: 23537498
Binary decision diagrams; Computational biology; Linear constraint solving; Minimal nutrient sets; SMT solvers; Metabolic and regulatory networks; Cellular metabolism
4.  What we can learn about Escherichia coli through application of Gene Ontology 
Trends in microbiology  2009;17(7):269-278.
How we classify the genes, products, and complexes that are present or absent in genomes, transcriptomes, proteomes, and other datasets helps us place biological objects into subsystems with common functions, see how molecular functions are used to implement biological processes, and compare the biology of different species and strains. Gene Ontology (GO) is one of the most successful systems for classifying biological function. Although GO is widely used for eukaryotic genomics, it has not yet been widely used for bacterial systems. The potential applications of GO are currently limited by the need to improve the annotation of bacterial genomes with GO and to improve how prokaryotic biology is represented in the ontology. In this review, we will discuss why GO should be adopted by microbiologists, and describe recent efforts to build and maintain high-quality GO annotation for Escherichia coli as a model system.
doi:10.1016/j.tim.2009.04.004
PMCID: PMC3575750  PMID: 19576778
5.  EcoCyc: fusing model organism databases with systems biology 
Nucleic Acids Research  2012;41(Database issue):D605-D612.
EcoCyc (http://EcoCyc.org) is a model organism database built on the genome sequence of Escherichia coli K-12 MG1655. Expert manual curation of the functions of individual E. coli gene products in EcoCyc has been based on information found in the experimental literature for E. coli K-12-derived strains. Updates to EcoCyc content continue to improve the comprehensive picture of E. coli biology. The utility of EcoCyc is enhanced by new tools available on the EcoCyc web site, and the development of EcoCyc as a teaching tool is increasing the impact of the knowledge collected in EcoCyc.
doi:10.1093/nar/gks1027
PMCID: PMC3531154  PMID: 23143106
6.  Construction and completion of flux balance models from pathway databases 
Bioinformatics  2012;28(3):388-396.
Motivation: Flux balance analysis (FBA) is a well-known technique for genome-scale modeling of metabolic flux. Typically, an FBA formulation requires the accurate specification of four sets: biochemical reactions, biomass metabolites, nutrients and secreted metabolites. The development of FBA models can be time consuming and tedious because of the difficulty in assembling completely accurate descriptions of these sets, and in identifying errors in the composition of these sets. For example, the presence of a single non-producible metabolite in the biomass will make the entire model infeasible. Other difficulties in FBA modeling are that model distributions, and predicted fluxes, can be cryptic and difficult to understand.
Results: We present a multiple gap-filling method to accelerate the development of FBA models using a new tool, called MetaFlux, based on mixed integer linear programming (MILP). The method suggests corrections to the sets of reactions, biomass metabolites, nutrients and secretions. The method generates FBA models directly from Pathway/Genome Databases. Thus, FBA models developed in this framework are easily queried and visualized using the Pathway Tools software. Predicted fluxes are more easily comprehended by visualizing them on diagrams of individual metabolic pathways or of metabolic maps. MetaFlux can also remove redundant high-flux loops, solve FBA models once they are generated and model the effects of gene knockouts. MetaFlux has been validated through construction of FBA models for Escherichia coli and Homo sapiens.
Availability: Pathway Tools with MetaFlux is freely available to academic users, and for a fee to commercial users. Download from: biocyc.org/download.shtml.
Contact: mario.latendresse@sri.com
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btr681
PMCID: PMC3268246  PMID: 22262672
7.  The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases 
Nucleic Acids Research  2011;40(Database issue):D742-D753.
The MetaCyc database (http://metacyc.org/) provides a comprehensive and freely accessible resource for metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are experimentally determined, small-molecule metabolic pathways and are curated from the primary scientific literature. MetaCyc contains more than 1800 pathways derived from more than 30 000 publications, and is the largest curated collection of metabolic pathways currently available. Most reactions in MetaCyc pathways are linked to one or more well-characterized enzymes, and both pathways and enzymes are annotated with reviews, evidence codes and literature citations. BioCyc (http://biocyc.org/) is a collection of more than 1700 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the full genome and predicted metabolic network of one organism. The network, which is predicted by the Pathway Tools software using MetaCyc as a reference database, consists of metabolites, enzymes, reactions and metabolic pathways. BioCyc PGDBs contain additional features, including predicted operons, transport systems and pathway-hole fillers. The BioCyc website and Pathway Tools software offer many tools for querying and analysis of PGDBs, including Omics Viewers and comparative analysis. New developments include a zoomable web interface for diagrams; flux-balance analysis model generation from PGDBs; web services; and a new tool called Web Groups.
doi:10.1093/nar/gkr1014
PMCID: PMC3245006  PMID: 22102576
8.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology 
Briefings in Bioinformatics  2009;11(1):40-79.
Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry.
doi:10.1093/bib/bbp043
PMCID: PMC2810111  PMID: 19955237
Genome informatics; Metabolic pathways; Pathway bioinformatics; Model organism databases; Genome databases; Biological networks; Regulatory networks
9.  EcoCyc: a comprehensive database of Escherichia coli biology 
Nucleic Acids Research  2010;39(Database issue):D583-D590.
EcoCyc (http://EcoCyc.org) is a comprehensive model organism database for Escherichia coli K-12 MG1655. From the scientific literature, EcoCyc captures the functions of individual E. coli gene products; their regulation at the transcriptional, post-transcriptional and protein level; and their organization into operons, complexes and pathways. EcoCyc users can search and browse the information in multiple ways. Recent improvements to the EcoCyc Web interface include combined gene/protein pages and a Regulation Summary Diagram displaying a graphical overview of all known regulatory inputs to gene expression and protein activity. The graphical representation of signal transduction pathways has been updated, and the cellular and regulatory overviews were enhanced with new functionality. A specialized undergraduate teaching resource using EcoCyc is being developed.
doi:10.1093/nar/gkq1143
PMCID: PMC3013716  PMID: 21097882
11.  The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases 
Nucleic Acids Research  2009;38(Database issue):D473-D479.
The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible resource for metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are experimentally determined, small-molecule metabolic pathways and are curated from the primary scientific literature. With more than 1400 pathways, MetaCyc is the largest collection of metabolic pathways currently available. Pathways reactions are linked to one or more well-characterized enzymes, and both pathways and enzymes are annotated with reviews, evidence codes, and literature citations. BioCyc (BioCyc.org) is a collection of more than 500 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the full genome and predicted metabolic network of one organism. The network, which is predicted by the Pathway Tools software using MetaCyc as a reference, consists of metabolites, enzymes, reactions and metabolic pathways. BioCyc PGDBs also contain additional features, such as predicted operons, transport systems, and pathway hole-fillers. The BioCyc Web site offers several tools for the analysis of the PGDBs, including Omics Viewers that enable visualization of omics datasets on two different genome-scale diagrams and tools for comparative analysis. The BioCyc PGDBs generated by SRI are offered for adoption by any party interested in curation of metabolic, regulatory, and genome-related information about an organism.
doi:10.1093/nar/gkp875
PMCID: PMC2808959  PMID: 19850718
12.  EcoCyc: A comprehensive view of Escherichia coli biology 
Nucleic Acids Research  2008;37(Database issue):D464-D470.
EcoCyc (http://EcoCyc.org) provides a comprehensive encyclopedia of Escherichia coli biology. EcoCyc integrates information about the genome, genes and gene products; the metabolic network; and the regulatory network of E. coli. Recent EcoCyc developments include a new initiative to represent and curate all types of E. coli regulatory processes such as attenuation and regulation by small RNAs. EcoCyc has started to curate Gene Ontology (GO) terms for E. coli and has made a dataset of E. coli GO terms available through the GO Web site. The curation and visualization of electron transfer processes has been significantly improved. Other software and Web site enhancements include the addition of tracks to the EcoCyc genome browser, in particular a type of track designed for the display of ChIP-chip datasets, and the development of a comparative genome browser. A new Genome Omics Viewer enables users to paint omics datasets onto the full E. coli genome for analysis. A new advanced query page guides users in interactively constructing complex database queries against EcoCyc. A Macintosh version of EcoCyc is now available. A series of Webinars is available to instruct users in the use of EcoCyc.
doi:10.1093/nar/gkn751
PMCID: PMC2686493  PMID: 18974181
13.  The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases 
Nucleic Acids Research  2007;36(Database issue):D623-D631.
MetaCyc (MetaCyc.org) is a universal database of metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are curated from the primary scientific literature, and are experimentally determined small-molecule metabolic pathways. Each reaction in a MetaCyc pathway is annotated with one or more well-characterized enzymes. Because MetaCyc contains only experimentally elucidated knowledge, it provides a uniquely high-quality resource for metabolic pathways and enzymes. BioCyc (BioCyc.org) is a collection of more than 350 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the predicted metabolic network of one organism, including metabolic pathways, enzymes, metabolites and reactions predicted by the Pathway Tools software using MetaCyc as a reference database. BioCyc PGDBs also contain predicted operons and predicted pathway hole fillers—predictions of which enzymes may catalyze pathway reactions that have not been assigned to an enzyme. The BioCyc website offers many tools for computational analysis of PGDBs, including comparative analysis and analysis of omics data in a pathway context. The BioCyc PGDBs generated by SRI are offered for adoption by any interested party for the ongoing integration of metabolic and genome-related information about an organism.
doi:10.1093/nar/gkm900
PMCID: PMC2238876  PMID: 17965431
14.  Multidimensional annotation of the Escherichia coli K-12 genome 
Nucleic Acids Research  2007;35(22):7577-7590.
The annotation of the Escherichia coli K-12 genome in the EcoCyc database is one of the most accurate, complete and multidimensional genome annotations. Of the 4460 E. coli genes, EcoCyc assigns biochemical functions to 76%, and 66% of all genes had their functions determined experimentally. EcoCyc assigns E. coli genes to Gene Ontology and to MultiFun. Seventy-five percent of gene products contain reviews authored by the EcoCyc project that summarize the experimental literature about the gene product. EcoCyc information was derived from 15 000 publications. The database contains extensive descriptions of E. coli cellular networks, describing its metabolic, transport and transcriptional regulatory processes. A comparison to genome annotations for other model organisms shows that the E. coli genome contains the most experimentally determined gene functions in both relative and absolute terms: 2941 (66%) for E. coli, 2319 (37%) for Saccharomyces cerevisiae, 1816 (5%) for Arabidopsis thaliana, 1456 (4%) for Mus musculus and 614 (4%) for Drosophila melanogaster. Database queries to EcoCyc survey the global properties of E. coli cellular networks and illuminate the extent of information gaps for E. coli, such as dead-end metabolites. EcoCyc provides a genome browser with novel properties, and a novel interactive display of transcriptional regulatory networks.
doi:10.1093/nar/gkm740
PMCID: PMC2190727  PMID: 17940092
15.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information 
An updated genome-scale reconstruction of the metabolic network in Escherichia coli K-12 MG1655 is presented. This updated metabolic reconstruction includes: (1) an alignment with the latest genome annotation and the metabolic content of EcoCyc leading to the inclusion of the activities of 1260 ORFs, (2) characterization and quantification of the biomass components and maintenance requirements associated with growth of E. coli and (3) thermodynamic information for the included chemical reactions. The conversion of this metabolic network reconstruction into an in silico model is detailed. A new step in the metabolic reconstruction process, termed thermodynamic consistency analysis, is introduced, in which reactions were checked for consistency with thermodynamic reversibility estimates. Applications demonstrating the capabilities of the genome-scale metabolic model to predict high-throughput experimental growth and gene deletion phenotypic screens are presented. The increased scope and computational capability using this new reconstruction is expected to broaden the spectrum of both basic biology and applied systems biology studies of E. coli metabolism.
doi:10.1038/msb4100155
PMCID: PMC1911197  PMID: 17593909
computational biology; group contribution method; systems biology; thermodynamics
16.  Querying and Computing with BioCyc Databases 
Bioinformatics (Oxford, England)  2005;21(16):3454-3455.
Summary
We describe multiple methods for accessing and querying the complex and integrated cellular data in the BioCyc family of databases: access through multiple file formats, access through Application Program Interfaces (APIs) for LISP, Perl and Java, and SQL access through the BioWarehouse relational database.
Availability
The Pathway Tools software and 20 BioCyc DBs in Tiers 1 and 2 are freely available to academic users; fees apply to some types of commercial use. For download instructions see http://BioCyc.org/download.shtml
doi:10.1093/bioinformatics/bti546
PMCID: PMC1450015  PMID: 15961440
17.  MetaCyc: a multiorganism database of metabolic pathways and enzymes 
Nucleic Acids Research  2005;34(Database issue):D511-D516.
MetaCyc is a database of metabolic pathways and enzymes located at . Its goal is to serve as a metabolic encyclopedia, containing a collection of non-redundant pathways central to small molecule metabolism, which have been reported in the experimental literature. Most of the pathways in MetaCyc occur in microorganisms and plants, although animal pathways are also represented. MetaCyc contains metabolic pathways, enzymatic reactions, enzymes, chemical compounds, genes and review-level comments. Enzyme information includes substrate specificity, kinetic properties, activators, inhibitors, cofactor requirements and links to sequence and structure databases. Data are curated from the primary literature by curators with expertise in biochemistry and molecular biology. MetaCyc serves as a readily accessible comprehensive resource on microbial and plant pathways for genome analysis, basic research, education, metabolic engineering and systems biology. Querying, visualization and curation of the database is supported by SRI's Pathway Tools software. The PathoLogic component of Pathway Tools is used in conjunction with MetaCyc to predict the metabolic network of an organism from its annotated genome. SRI and the European Bioinformatics Institute employed this tool to create pathway/genome databases (PGDBs) for 165 organisms, available at the website. These PGDBs also include predicted operons and pathway hole fillers.
doi:10.1093/nar/gkj128
PMCID: PMC1347490  PMID: 16381923
18.  Computational prediction of human metabolic pathways from the complete human genome 
Genome Biology  2004;6(1):R2.
A computation pathway analysis of the human genome is presented that assigns enzymes encoded by the genome to predicted metabolic pathways. This analysis provides a genome-based view of human nutrition.
Background
We present a computational pathway analysis of the human genome that assigns enzymes encoded therein to predicted metabolic pathways. Pathway assignments place genes in their larger biological context, and are a necessary first step toward quantitative modeling of metabolism.
Results
Our analysis assigns 2,709 human enzymes to 896 bioreactions; 622 of the enzymes are assigned roles in 135 predicted metabolic pathways. The predicted pathways closely match the known nutritional requirements of humans. This analysis identifies probable omissions in the human genome annotation in the form of 203 pathway holes (missing enzymes within the predicted pathways). We have identified putative genes to fill 25 of these holes. The predicted human metabolic map is described by a Pathway/Genome Database called HumanCyc, which is available at . We describe the generation of HumanCyc, and present an analysis of the human metabolic map. For example, we compare the predicted human metabolic pathway complement to the pathways of Escherichia coli and Arabidopsis thaliana and identify 35 pathways that are shared among all three organisms.
Conclusions
Our analysis elucidates a significant portion of the human metabolic map, and also indicates probable unidentified genes in the genome. HumanCyc provides a genome-based view of human nutrition that associates the essential dietary requirements of humans with a set of metabolic pathways whose existence is supported by the human genome. The database places many human genes in a pathway context, thereby facilitating analysis of gene expression, proteomics, and metabolomics datasets through a publicly available online tool called the Omics Viewer.
doi:10.1186/gb-2004-6-1-r2
PMCID: PMC549063  PMID: 15642094

Results 1-18 (18)