Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Online tools for understanding rat physiology 
Briefings in Bioinformatics  2010;11(4):431-439.
Rat models have been used to investigate physiological and pathophysiological mechanisms for decades. With the availability of the rat genome and other online resources, tools to identify rat models that mimic human disease are an important step in translational research. Despite the large number of papers published each year using rat models, integrating this information remains a problem. Resources for the rat genome are continuing to grow rapidly, while resources providing access to rat phenotype data are just emerging. An overview of rat models of disease, tools to characterize strain by phenotype and genotype, and steps being taken to integrate rat physiological data is presented in this article. Integrating functional and physiological data with the rat genome will build a solid research platform to facilitate innovative studies to unravel the mechanisms resulting in disease.
PMCID: PMC2905522  PMID: 20056729
phenotype; physiological genomics; database; rat strains; disease models; genome
2.  PhenoMiner: a quantitative phenotype database for the laboratory rat, Rattus norvegicus. Application in hypertension and renal disease 
Rats have been used extensively as animal models to study physiological and pathological processes involved in human diseases. Numerous rat strains have been selectively bred for certain biological traits related to specific medical interests. Recently, the Rat Genome Database ( has initiated the PhenoMiner project to integrate quantitative phenotype data from the PhysGen Program for Genomic Applications and the National BioResource Project in Japan as well as manual annotations from biomedical literature. PhenoMiner, the search engine for these integrated phenotype data, facilitates mining of data sets across studies by searching the database with a combination of terms from four different ontologies/vocabularies (Rat Strain Ontology, Clinical Measurement Ontology, Measurement Method Ontology and Experimental Condition Ontology). In this study, salt-induced hypertension was used as a model to retrieve blood pressure records of Brown Norway, Fawn-Hooded Hypertensive (FHH) and Dahl salt-sensitive (SS) rat strains. The records from these three strains served as a basis for comparing records from consomic/congenic/mutant offspring derived from them. We examined the cardiovascular and renal phenotypes of consomics derived from FHH and SS, and of SS congenics and mutants. The availability of quantitative records across laboratories in one database, such as these provided by PhenoMiner, can empower researchers to make the best use of publicly available data.
Database URL:
PMCID: PMC4309021  PMID: 25632109
3.  OntoMate: a text-mining tool aiding curation at the Rat Genome Database 
The Rat Genome Database (RGD) is the premier repository of rat genomic, genetic and physiologic data. Converting data from free text in the scientific literature to a structured format is one of the main tasks of all model organism databases. RGD spends considerable effort manually curating gene, Quantitative Trait Locus (QTL) and strain information. The rapidly growing volume of biomedical literature and the active research in the biological natural language processing (bioNLP) community have given RGD the impetus to adopt text-mining tools to improve curation efficiency. Recently, RGD has initiated a project to use OntoMate, an ontology-driven, concept-based literature search engine developed at RGD, as a replacement for the PubMed ( search engine in the gene curation workflow. OntoMate tags abstracts with gene names, gene mutations, organism name and most of the 16 ontologies/vocabularies used at RGD. All terms/ entities tagged to an abstract are listed with the abstract in the search results. All listed terms are linked both to data entry boxes and a term browser in the curation tool. OntoMate also provides user-activated filters for species, date and other parameters relevant to the literature search. Using the system for literature search and import has streamlined the process compared to using PubMed. The system was built with a scalable and open architecture, including features specifically designed to accelerate the RGD gene curation process. With the use of bioNLP tools, RGD has added more automation to its curation workflow.
Database URL:
PMCID: PMC4305386  PMID: 25619558
4.  Disease pathways at the Rat Genome Database Pathway Portal: genes in context—a network approach to understanding the molecular mechanisms of disease 
Human Genomics  2014;8(1):17.
Biological systems are exquisitely poised to respond and adjust to challenges, including damage. However, sustained damage can overcome the ability of the system to adjust and result in a disease phenotype, its underpinnings many times elusive. Unraveling the molecular mechanisms of systems biology, of how and why it falters, is essential for delineating the details of the path(s) leading to the diseased state and for designing strategies to revert its progression. An important aspect of this process is not only to define the function of a gene but to identify the context within which gene functions act. It is within the network, or pathway context, that the function of a gene fulfills its ultimate biological role. Resolving the extent to which defective function(s) affect the proceedings of pathway(s) and how altered pathways merge into overpowering the system’s defense machinery are key to understanding the molecular aspects of disease and envisioning ways to counteract it. A network-centric approach to diseases is increasingly being considered in current research. It also underlies the deployment of disease pathways at the Rat Genome Database Pathway Portal. The portal is presented with an emphasis on disease and altered pathways, associated drug pathways, pathway suites, and suite networks.
The Pathway Portal at the Rat Genome Database (RGD) provides an ever-increasing collection of interactive pathway diagrams and associated annotations for metabolic, signaling, regulatory, and drug pathways, including disease and altered pathways. A disease pathway is viewed from the perspective of networks whose alterations are manifested in the affected phenotype. The Pathway Ontology (PW), built and maintained at RGD, facilitates the annotations of genes, the deployment of pathway diagrams, and provides an overall navigational tool. Pathways that revolve around a common concept and are globally connected are presented within pathway suites; a suite network combines two or more pathway suites.
The Pathway Portal is a rich resource that offers a range of pathway data and visualization, including disease pathways and related pathway suites. Viewing a disease pathway from the perspective of underlying altered pathways is an aid for dissecting the molecular mechanisms of disease.
PMCID: PMC4191248  PMID: 25265995
Molecular pathway; Disease pathway; Altered pathway; Ontology; Systems biology
5.  The pathway ontology – updates and applications 
The Pathway Ontology (PW) developed at the Rat Genome Database (RGD), covers all types of biological pathways, including altered and disease pathways and captures the relationships between them within the hierarchical structure of a directed acyclic graph. The ontology allows for the standardized annotation of rat, and of human and mouse genes to pathway terms. It also constitutes a vehicle for easy navigation between gene and ontology report pages, between reports and interactive pathway diagrams, between pathways directly connected within a diagram and between those that are globally related in pathway suites and suite networks. Surveys of the literature and the development of the Pathway and Disease Portals are important sources for the ongoing development of the ontology. User requests and mapping of pathways in other databases to terms in the ontology further contribute to increasing its content. Recently built automated pipelines use the mapped terms to make available the annotations generated by other groups.
The two released pipelines – the Pathway Interaction Database (PID) Annotation Import Pipeline and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Annotation Import Pipeline, make available over 7,400 and 31,000 pathway gene annotations, respectively. Building the PID pipeline lead to the addition of new terms within the signaling node, also augmented by the release of the RGD “Immune and Inflammatory Disease Portal” at that time. Building the KEGG pipeline lead to a substantial increase in the number of disease pathway terms, such as those within the ‘infectious disease pathway’ parent term category. The ‘drug pathway’ node has also seen increases in the number of terms as well as a restructuring of the node. Literature surveys, disease portal deployments and user requests have contributed and continue to contribute additional new terms across the ontology. Since first presented, the content of PW has increased by over 75%.
Ongoing development of the Pathway Ontology and the implementation of pipelines promote an enriched provision of pathway data. The ontology is freely available for download and use from the RGD ftp site at or from the National Center for Biomedical Ontology (NCBO) BioPortal website at
PMCID: PMC3922094  PMID: 24499703
Biological pathway; Ontology; Pipeline; Pathway annotations; Pathway diagrams
6.  Exploring Genetic, Genomic, and Phenotypic Data at the Rat Genome Database 
The laboratory rat, Rattus norvegicus, is an important model of human health and disease, and experimental findings in the rat have relevance to human physiology and disease. The Rat Genome Database (RGD, is a model organism database that provides access to a wide variety of curated rat data including disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components for genes, quantitative trait loci, and strains. We present an overview of the database followed by specific examples that can be used to gain experience in employing RGD to explore the wealth of functional data available for the rat.
PMCID: PMC3555435  PMID: 23255149
rat; database; quantitative trait locus; ontology; genomics; gene
7.  Rat Strain Ontology: structured controlled vocabulary designed to facilitate access to strain data at RGD 
The Rat Genome Database (RGD) ( is the premier site for comprehensive data on the different strains of the laboratory rat (Rattus norvegicus). The strain data are collected from various publications, direct submissions from individual researchers, and rat providers worldwide. Rat strain, substrain designation and nomenclature follow the Guidelines for Nomenclature of Mouse and Rat Strains, instituted by the International Committee on Standardized Genetic Nomenclature for Mice. While symbols and names aid in identifying strains correctly, the flat nature of this information prohibits easy search and retrieval, as well as other data mining functions. In order to improve these functionalities, particularly in ontology-based tools, the Rat Strain Ontology (RS) was developed.
The Rat Strain Ontology (RS) reflects the breeding history, parental background, and genetic manipulation of rat strains. This controlled vocabulary organizes strains by type: inbred, outbred, chromosome altered, congenic, mutant and so on. In addition, under the chromosome altered category, strains are organized by chromosome, and further by type of manipulations, such as mutant or congenic. This allows users to easily retrieve strains of interest with modifications in specific genomic regions. The ontology was developed using the Open Biological and Biomedical Ontology (OBO) file format, and is organized on the Directed Acyclic Graph (DAG) structure. Rat Strain Ontology IDs are included as part of the strain report (RS: ######).
As rat researchers are often unaware of the number of substrains or altered strains within a breeding line, this vocabulary now provides an easy way to retrieve all substrains and accompanying information. Its usefulness is particularly evident in tools such as the PhenoMiner at RGD, where users can now easily retrieve phenotype measurement data for related strains, strains with similar backgrounds or those with similar introgressed regions. This controlled vocabulary also allows better retrieval and filtering for QTLs and in genomic tools such as the GViewer.
The Rat Strain Ontology has been incorporated into the RGD Ontology Browser ( and is available through the National Center for Biomedical Ontology ( or the RGD ftp site (
PMCID: PMC4177145  PMID: 24267899
Rat strains; Phylogeny; RGD; Rat genome database
8.  The clinical measurement, measurement method and experimental condition ontologies: expansion, improvements and new applications 
The Clinical Measurement Ontology (CMO), Measurement Method Ontology (MMO), and Experimental Condition Ontology (XCO) were originally developed at the Rat Genome Database (RGD) to standardize quantitative rat phenotype data in order to integrate results from multiple studies into the PhenoMiner database and data mining tool. These ontologies provide the framework for presenting what was measured, how it was measured, and under what conditions it was measured.
There has been a continuing expansion of subdomains in each ontology with a parallel 2–3 fold increase in the total number of terms, substantially increasing the size and improving the scope of the ontologies. The proportion of terms with textual definitions has increased from ~60% to over 80% with greater synchronization of format and content throughout the three ontologies. Representation of definition source Uniform Resource Identifiers (URI) has been standardized, including the removal of all non-URI characters, and systematic versioning of all ontology files has been implemented. The continued expansion and success of these ontologies has facilitated the integration of more than 60,000 records into the RGD PhenoMiner database. In addition, new applications of these ontologies, such as annotation of Quantitative Trait Loci (QTL), have been added at the sites actively using them, including RGD and the Animal QTL Database.
The improvements to these three ontologies have been substantial, and development is ongoing. New terms and expansions to the ontologies continue to be added as a result of active curation efforts at RGD and the Animal QTL database. Use of these vocabularies to standardize data representation for quantitative phenotypes and quantitative trait loci across databases for multiple species has demonstrated their utility for integrating diverse data types from multiple sources. These ontologies are freely available for download and use from the NCBO BioPortal website at (CMO), (MMO), and (XCO), or from the RGD ftp site at
PMCID: PMC3882879  PMID: 24103152
9.  Chromosome substitution modulates resistance to ischemia reperfusion injury in Brown Norway rats 
Kidney international  2012;83(2):242-250.
Brown Norway rats (BN, BN/NHsdMcwi) are profoundly resistant to developing acute kidney injury (AKI) following ischemia reperfusion. To help define the genetic basis for this resistance, we used consomic rats, in which individual chromosomes from BN rats were placed into the genetic background of Dahl SS rats (SS, SS/JrHsdMcwi) to determine which chromosomes contain alleles contributing to protection from AKI. The parental strains had dramatically different sensitivity to ischemia reperfusion with plasma creatinine levels following 45 minutes of ischemia and 24 hours reperfusion of 4.1 and 1.3 mg/dl in SS and in BN, respectively. No consomic strain showed protection similar to the parental BN strain. Nine consomic strains (SS-7BN, SS-XBN, SS-8BN, SS-4BN, SS-15BN, SS-3BN, SS-10BN, SS-6BN, and SS-5BN) showed partial protection (plasma creatinine about 2.5-3.0 mg/dl), suggesting that multiple alleles contribute to the severity of AKI. In silico analysis was performed using disease ontology database terms and renal function quantitative trait loci from the rat genome database on the BN chromosomes giving partial protection from AKI. This tactic identified at least 36 candidate genes, with several previously linked to the pathophysiology of AKI. Thus, natural variants of these alleles or yet to be identified alleles on these chromosomes provide protection against AKI. These alleles may be potential modulators of AKI in susceptible patient populations.
PMCID: PMC3561482  PMID: 23235564
acute kidney injury; genetic susceptibility
10.  Analysis of disease-associated objects at the Rat Genome Database 
The Rat Genome Database (RGD) is the premier resource for genetic, genomic and phenotype data for the laboratory rat, Rattus norvegicus. In addition to organizing biological data from rats, the RGD team focuses on manual curation of gene–disease associations for rat, human and mouse. In this work, we have analyzed disease-associated strains, quantitative trait loci (QTL) and genes from rats. These disease objects form the basis for seven disease portals. Among disease portals, the cardiovascular disease and obesity/metabolic syndrome portals have the highest number of rat strains and QTL. These two portals share 398 rat QTL, and these shared QTL are highly concentrated on rat chromosomes 1 and 2. For disease-associated genes, we performed gene ontology (GO) enrichment analysis across portals using RatMine enrichment widgets. Fifteen GO terms, five from each GO aspect, were selected to profile enrichment patterns of each portal. Of the selected biological process (BP) terms, ‘regulation of programmed cell death’ was the top enriched term across all disease portals except in the obesity/metabolic syndrome portal where ‘lipid metabolic process’ was the most enriched term. ‘Cytosol’ and ‘nucleus’ were common cellular component (CC) annotations for disease genes, but only the cancer portal genes were highly enriched with ‘nucleus’ annotations. Similar enrichment patterns were observed in a parallel analysis using the DAVID functional annotation tool. The relationship between the preselected 15 GO terms and disease terms was examined reciprocally by retrieving rat genes annotated with these preselected terms. The individual GO term–annotated gene list showed enrichment in physiologically related diseases. For example, the ‘regulation of blood pressure’ genes were enriched with cardiovascular disease annotations, and the ‘lipid metabolic process’ genes with obesity annotations. Furthermore, we were able to enhance enrichment of neurological diseases by combining ‘G-protein coupled receptor binding’ annotated genes with ‘protein kinase binding’ annotated genes.
Database URL:
PMCID: PMC3689439  PMID: 23794737
11.  PhenoMiner: quantitative phenotype curation at the rat genome database 
The Rat Genome Database (RGD) is the premier repository of rat genomic and genetic data and currently houses >40 000 rat gene records as well as human and mouse orthologs, >2000 rat and 1900 human quantitative trait loci (QTLs) records and >2900 rat strain records. Biological information curated for these data objects includes disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components. Recently, a project was initiated at RGD to incorporate quantitative phenotype data for rat strains, in addition to the currently existing qualitative phenotype data for rat strains, QTLs and genes. A specialized curation tool was designed to generate manual annotations with up to six different ontologies/vocabularies used simultaneously to describe a single experimental value from the literature. Concurrently, three of those ontologies needed extensive addition of new terms to move the curation forward. The curation interface development, as well as ontology development, was an ongoing process during the early stages of the PhenoMiner curation project.
Database URL:
PMCID: PMC3630803  PMID: 23603846
12.  The Rat Genome Database 2013—data, tools and users 
Briefings in Bioinformatics  2013;14(4):520-526.
The Rat Genome Database (RGD) was started >10 years ago to provide a core genomic resource for rat researchers. Currently, RGD combines genetic, genomic, pathway, phenotype and strain information with a focus on disease. RGD users are provided with access to structured and curated data from the molecular level through the organismal level. Those users access RGD from all over the world. End users are not only rat researchers but also researchers working with mouse and human data. Translational research is supported by RGD’s comparative genetics/genomics data in disease portals, in GBrowse, in VCMap and on gene report pages. The impact of RGD also goes beyond the traditional biomedical researcher, as the influence of RGD reaches bioinformaticians, tool developers and curators. Import of RGD data into other publicly available databases expands the influence of RGD to a larger set of end users than those who avail themselves of the RGD website. The value of RGD continues to grow as more types of data and more tools are added, while reaching more types of end users.
PMCID: PMC3713714  PMID: 23434633
database; genome; rat; disease; human
13.  The updated RGD Pathway Portal utilizes increased curation efficiency and provides expanded pathway information 
Human Genomics  2013;7(1):4.
The RGD Pathway Portal provides pathway annotations for rat, human and mouse genes and pathway diagrams and suites, all interconnected via the pathway ontology. Diagram pages present the diagram and description, with diagram objects linked to additional resources. A newly-developed dual-functionality web application composes the diagram page. Curators input the description, diagram, references and additional pathway objects. The application combines these with tables of rat, human and mouse pathway genes, including genetic information, analysis tool and reference links, and disease, phenotype and other pathway annotations to pathway genes. The application increases the information content of diagram pages while expediting publication.
PMCID: PMC3598722  PMID: 23379628
Curation; Databases; Ontologies; Pathways; Tools
14.  Three Ontologies to Define Phenotype Measurement Data 
Background: There is an increasing need to integrate phenotype measurement data across studies for both human studies and those involving model organisms. Current practices allow researchers to access only those data involved in a single experiment or multiple experiments utilizing the same protocol. Results: Three ontologies were created: Clinical Measurement Ontology, Measurement Method Ontology and Experimental Condition Ontology. These ontologies provided the framework for integration of rat phenotype data from multiple studies into a single resource as well as facilitated data integration from multiple human epidemiological studies into a centralized repository. Conclusion: An ontology based framework for phenotype measurement data affords the ability to successfully integrate vital phenotype data into critical resources, regardless of underlying technological structures allowing the user to easily query and retrieve data from multiple studies.
PMCID: PMC3361058  PMID: 22654893
ontology; phenotype
15.  Ontology searching and browsing at the Rat Genome Database 
The Rat Genome Database (RGD) is the premier repository of rat genomic and genetic data and currently houses over 40 000 rat gene records, as well as human and mouse orthologs, 1857 rat and 1912 human quantitative trait loci (QTLs) and 2347 rat strains. Biological information curated for these data objects includes disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components. RGD uses more than a dozen different ontologies to standardize annotation information for genes, QTLs and strains. That means a lot of time can be spent searching and browsing ontologies for the appropriate terms needed both for curating and mining the data. RGD has upgraded its ontology term search to make it more versatile and more robust. A term search result is connected to a term browser so the user can fine-tune the search by viewing parent and children terms. Most publicly available term browsers display a hierarchical organization of terms in an expandable tree format. RGD has replaced its old tree browser format with a ‘driller’ type of browser that allows quicker drilling up and down through the term branches, which has been confirmed by testing. The RGD ontology report pages have also been upgraded. Expanded functionality allows more choice in how annotations are displayed and what subsets of annotations are displayed. The new ontology search, browser and report features have been designed to enhance both manual data curation and manual data extraction.
Database URL:
PMCID: PMC3308169  PMID: 22434847
16.  Gene Targeting in the Rat: Advances and Opportunities 
Trends in genetics : TIG  2010;26(12):510-518.
The rat has long been a model favored by physiologists, pharmacologists, and neuroscientists. However, over the last two decades, many investigators in these fields have turned to the mouse because of its gene modification technologies and extensive genomic resources. While the genomic resources of the rat have nearly caught-up, gene targeting has lagged far behind, limiting the value of the rat for many investigators. In the last two years, advances in transposon- and zinc finger nuclease-mediated gene knockout as well as the establishment and culturing of embryonic and inducible pluripotent stem cells have created new opportunities for rat genetic research. Here, we provide a high-level description and potential uses of these new technologies for investigators using the rat for biomedical research.
PMCID: PMC2991520  PMID: 20869786
17.  The Rat Genome Database Pathway Portal 
The set of interacting molecules collectively referred to as a pathway or network represents a fundamental structural unit, the building block of the larger, highly integrated networks of biological systems. The scientific community's interest in understanding the fine details of how pathways work, communicate with each other and synergize, and how alterations in one or several pathways may converge into a disease phenotype, places heightened demands on pathway data and information providers. To meet such demands, the Rat Genome Database [(RGD)] has adopted a multitiered approach to pathway data acquisition and presentation. Resources and tools are continuously added or expanded to offer more comprehensive pathway data sets as well as enhanced pathway data manipulation, exploration and visualization capabilities. At RGD, users can easily identify genes in pathways, see how pathways relate to each other and visualize pathways in a dynamic and integrated manner. They can access these and other components from several entry points and effortlessly navigate between them and they can download the data of interest. The Pathway Portal resources at RGD are presented, and future directions are discussed.
Database URL:
PMCID: PMC3072770  PMID: 21478484
18.  The Rat Genome Database curation tool suite: a set of optimized software tools enabling efficient acquisition, organization, and presentation of biological data 
The Rat Genome Database (RGD) is the premier repository of rat genomic and genetic data and currently houses over 40 000 rat gene records as well as human and mouse orthologs, 1771 rat and 1911 human quantitative trait loci (QTLs) and 2209 rat strains. Biological information curated for these data objects includes disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components. A suite of tools has been developed to aid curators in acquiring and validating data objects, assigning nomenclature, attaching biological information to objects and making connections among data types. The software used to assign nomenclature, to create and edit objects and to make annotations to the data objects has been specifically designed to make the curation process as fast and efficient as possible. The user interfaces have been adapted to the work routines of the curators, creating a suite of tools that is intuitive and powerful.
Database URL:
PMCID: PMC3041158  PMID: 21321022
20.  The Rat Genome Database 2009: variation, ontologies and pathways 
Nucleic Acids Research  2008;37(Database issue):D744-D749.
The Rat Genome Database (RGD, was developed to provide a core resource for rat researchers combining genetic, genomic, pathway, phenotype and strain information with a focus on disease. RGD users are provided with access to structured and curated data from the molecular level through to the level of the whole organism, including the variations associated with disease phenotypes. To fully support use of the rat as a translational model for biological systems and human disease, RGD continues to curate these datasets while enhancing and developing tools to allow efficient and effective access to the data in a variety of formats including linear genome viewers, pathway diagrams and biological ontologies. To support pathophysiological analysis of data, RGD Disease Portals provide an entryway to integrated gene, QTL and strain data specific to a particular disease. In addition to tool and content development and maintenance, RGD promotes rat research and provides user education by creating and disseminating tutorials on the curated datasets, submission processes, and tools available at RGD. By curating, storing, integrating, visualizing and promoting rat data, RGD ensures that the investment made into rat genomics and genetics can be leveraged by all interested investigators.
PMCID: PMC2686558  PMID: 18996890

Results 1-20 (20)