PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Xiong, jijia")
1.  Magnetic particle detection (MPD) for in-vitro dosimetry 
In-vitro tests intended for evaluating the potential health effects of magnetic nanoparticles generally require an accurate measure of cell dose to promote the consistent use and interpretation of biological response. Here, a simple low-cost inductive sensor is developed for quickly determining the total mass of magnetic nanoparticles that is bound to the plasma membrane and internalized by cultured cells. Sensor operation exploits an oscillating magnetic field (f0 = 250 kHz) together with the nonlinear response of particle magnetization to generate a harmonic signal (f3 = 750 kHz) that varies linearly with particulate mass (R2 > 0.999) and is sufficiently sensitive for detecting ~100 ng of carboxyl-coated iron-oxide nanoparticles in under a second. When exploited for measuring receptor-mediated nanoparticle uptake in RAW 264.7 macrophages, results show that the achieved dosimetric performance is comparable with relatively expensive analytical techniques that are much more time-consuming and labor-intensive to perform. The described sensing is therefore potentially better suited for low-cost in-vitro assays that require fast and quantitative magnetic particle detection.
doi:10.1016/j.bios.2012.12.011
PMCID: PMC3727384  PMID: 23287653
Magnetic nanoparticle; Detector; In-vitro; Dosimetry
2.  Delivery of MicroRNA-10b with Polylysine Nanoparticles for Inhibition of Breast Cancer Cell Wound Healing 
Recent studies revealed that micro RNA-10b (mir-10b) is highly expressed in metastatic breast cancer cells and positively regulates breast cancer cell migration and invasion through inhibition of HOXD10 target synthesis. In this study we designed anti-mir-10b molecules and combined them with poly L-lysine (PLL) to test the delivery effectiveness. An RNA molecule sequence exactly matching the mature mir-10b minor antisense showed strong inhibition when mixed with PLL in a wound-healing assay with human breast cell line MDA-MB-231. The resulting PLL-RNA nanoparticles delivered the anti-microRNA molecules into cytoplasm of breast cancer cells in a concentration-dependent manner that displayed sustainable effectiveness.
doi:10.4137/BCBCR.S8513
PMCID: PMC3256732  PMID: 22259248
microRNA-10b; breast cancer metastasis; nanoparticles
3.  Increased Catalytic Efficiency Following Gene Fusion of Bifunctional Methionine Sulfoxide Reductase Enzymes from Shewanella oneidensis 
Biochemistry  2007;46(49):14153-14161.
Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificies that respectively reduce the S- and R-stereoisomers of methionine sulfoxide (MetSO), and together function as critical antioxidant enzymes. In some pathogenic and metal -reducing bacteria these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate how gene fusion affects the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal-reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme from Shewanella oneidensis and a genetically engineered MsrB protein. MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin (CaM); while only partial repair is observed using both MsrA and MsrB enzymes together at 25 °C. A restoration of the normal protein fold is observed coincident with the repair of MetSO in oxidized CaM by MsrBA, as monitored by the time-dependent increases in the anisotropy associated with the rigidly bound multiuse affinity probe 4′5′-bis(1,3,2-dithoarsolan-2yl)fluorescein (FlAsH). Underlying the efficient repair of MetSO in oxidized CaM is the coordinate activity of the two catalytic domains in the MsrBA fusion protein, which results in an order of magnitude rate enhancement in comparison to the individual MsrA or MsrB enzymes alone. The coordinate binding of both domains of MsrBA permits the full repair of all MetSO in CaMox. The common expression of Msr fusion proteins in bacterial pathogens is consistent with an important role for this enzyme activity in the maintenance of protein function necessary for bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation.
doi:10.1021/bi701151t
PMCID: PMC2546871  PMID: 17997579

Results 1-3 (3)