Search tips
Search criteria

Results 1-25 (8462)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Prevalence of major cardiovascular risk factors and adverse risk profiles among three ethnic groups in the Xinjiang Uygur Autonomous Region, China 
Prevalence of cardiovascular disease (CVD) risk factors have been scarcely studied in Xinjiang, a multi-ethnic region.
Multi-ethnic, cross-sectional cardiovascular risk survey study in Xinjiang, including individuals of Uygur (n = 4695), Han (n = 3717) and Kazakh (n = 3196) ethnicities, aged 35-74 years. Analyses involved 11,608 participants with complete data enrolled between October 2007 and March 2010.
There were differences in age-standardized prevalence of CVD risk factors between the three groups (all P < 0.001). Hypertension, obesity and smoking rates were higher among Kazakh (54.6%, 24.5%, and 35.8%, respectively). Dyslipidemia prevalence was higher among Uygur (54.3%), and diabetes prevalence was higher among Hans (7.1%). Age-standardized prevalence of adverse CVD risk profiles was different across different ethnicities. Compared with the Han participants, the Uygur and Kazakh had more CVD risk factors (P < 0.001). Compared with the Han participants, the adjusted odds ratios of 1, 2, and ≥3 risk factors profiles for Kazakh and Uygur participants were higher (all P < 0.001).
The present study showed the pervasive burden of CVD risk factors in all participant groups in the Xinjiang region. Three major ethnic groups living in Xinjiang had striking differences in the prevalence of major CVD risk factors and adverse risk profiles. Ethnic-specific strategies should be developed to prevent CVD in different ethnic groups, as well as to develop strategies to prevent future development of adverse CVD risk factors at a younger age.
PMCID: PMC3866600  PMID: 24341701
Cardiovascular disease; Risk factors; Disparities; Ethnicity; Epidemiology
2.  Circulating High-Molecular-Weight (HMW) Adiponectin Level Is Related with Breast Cancer Risk Better than Total Adiponectin: A Case-Control Study 
PLoS ONE  2015;10(6):e0129246.
The level of total adiponectin, a mixture of different adiponectin forms, has been reported associated with breast cancer risk with inconsistent results. Whether the different forms play different roles in breast cancer risk prediction is unclear. To examine this, we measured total and high molecular weight (HMW) adiponectin in a case-control study (1167 sets). Higher circulating HMW adiponectin was negatively associated with breast cancer risk after adjusting for menopausal status and family history of breast cancer (P=0.024). We analyzed the relationship between adiponectin and breast cancer risk in 6 subgroups. Higher circulating HMW adiponectin was also negatively associated with breast cancer risk (P=0.020, 0.014, 0.035) in the subgroups of postmenopausal women, negative family history of breast cancer, BMI>=24.0. Total adiponectin was positively associated with breast cancer (P=0.028) in the subgroup of BMI<=24.0. Higher HMW/total adiponectin ratio was negatively associated with breast cancer (P=0.019) in the subgroup of postmenopausal women. Interestingly, in the subgroup of women with family history of breast cancer, higher circulating total and HMW adiponectin were positively associated with breast cancer risk (P=0.034, 0.0116). This study showed different forms of circulating adiponectin levels might play different roles in breast cancer risk. A higher circulating HMW adiponectin is associated with a decreased breast cancer risk, especially in postmenopausal, without family history of breast cancer or BMI>=24.0 subgroups, whereas higher circulating HMW adiponectin levels is a risk factor in women with a family history of breast cancer. Further investigation of different forms of adiponectin on breast cancer risk is needed.
PMCID: PMC4466435  PMID: 26070203
3.  Transplantation of Human Menstrual Blood Progenitor Cells Improves Hyperglycemia by Promoting Endogenous Progenitor Differentiation in Type 1 Diabetic Mice 
Stem Cells and Development  2014;23(11):1245-1257.
Recently, a unique population of progenitor cells was isolated from human menstrual blood. The human menstrual blood progenitor cells (MBPCs) possess many advantages, such as the noninvasive acquisition procedure, broad multipotency, a higher proliferative rate, and low immunogenicity, and have attracted extensive attention in regenerative medicine. Preclinical studies to test the safety and efficacy of MBPCs have been underway in several animal models. However, relevant studies in type 1 diabetes mellitus (T1DM) have not yet been proceeded. Herein, we studied the therapeutic effect of MBPCs and the mechanism of β-cell regeneration after MBPC transplantation in the T1DM model. Intravenous injection of MBPCs can reverse hyperglycemia and weight loss, prolong lifespan, and increase insulin production in diabetic mice. Histological and immunohistochemistry analyses indicated that T1DM mice with MBPC transplantation recovered islet structures and increased the β-cell number. We further analyzed in vivo distribution of MBPCs and discovered that a majority of MBPCs migrated into damaged pancreas and located at the islet, duct, and exocrine tissue. MBPCs did not differentiate into insulin-producing cells, but enhanced neurogenin3 (ngn3) expression, which represented endocrine progenitors that were activated. Ngn3+ cells were not only in the ductal epithelium, but also in the islet and exocrine tissue. We analyzed a series of genes associated with the embryonic mode of β-cell development by real-time polymerase chain reaction and the results showed that the levels of those gene expressions all increased after cell transplantation. According to the results, we concluded that MBPCs stimulated β-cell regeneration through promoting differentiation of endogenous progenitor cells.
PMCID: PMC4027987  PMID: 24499421
4.  Optimal cutoff of the waist-to-hip ratio for detecting cardiovascular risk factors among Han adults in Xinjiang 
The optimal cutoff of the waist-to-hip ratio (WHR) among Han adults in Xinjiang, which is located in the center of Asia, is unknown. We aimed to examine the relationship between different WHRs and cardiovascular risk factors among Han adults in Xinjiang, and determine the optimal cutoff of the WHR.
The Cardiovascular Risk Survey was conducted from October 2007 to March 2010. A total of 14618 representative participants were selected using a four-stage stratified sampling method. A total of 5757 Han participants were included in the study. The present statistical analysis was restricted to the 5595 Han subjects who had complete anthropometric data. The sensitivity, specificity, and distance on the receiver operating characteristic (ROC) curve in each WHR level were calculated. The shortest distance in the ROC curves was used to determine the optimal cutoff of the WHR for detecting cardiovascular risk factors.
In women, the WHR was positively associated with systolic blood pressure, diastolic blood pressure, and serum concentrations of serum total cholesterol. The prevalence of hypertension and hypertriglyceridemia increased as the WHR increased. The same results were not observed among men. The optimal WHR cutoffs for predicting hypertension, diabetes, dyslipidemia and ≥ two of these risk factors for Han adults in Xinjiang were 0.92, 0.92, 0.91, 0.92 in men and 0.88, 0.89, 0.88, 0.89 in women, respectively.
Higher cutoffs for the WHR are required in the identification of Han adults aged ≥ 35 years with a high risk of cardiovascular diseases in Xinjiang.
PMCID: PMC4122671  PMID: 25074400
Cutoff; Waist-to-hip ratio; Cardiovascular risk factors; Han adults; Xinjiang
5.  Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease 
Nature genetics  2012;44(8):890-894.
We performed a meta-analysis of 2 genome-wide association studies of coronary artery disease comprising 1,515 cases with coronary artery disease and 5,019 controls, followed by de novo replication studies in 15,460 cases and 11,472 controls, all of Chinese Han descent. We successfully identified four new loci for coronary artery disease reaching genome-wide significance (P < 5 × 10−8), which mapped in or near TTC32-WDR35, GUCY1A3, C6orf10-BTNL2 and ATP2B1. We also replicated four loci previously identified in European populations (PHACTR1, TCF21, CDKN2A/B and C12orf51). These findings provide new insights into biological pathways for the susceptibility of coronary artery disease in Chinese Han population.
PMCID: PMC3927410  PMID: 22751097
6.  Prevalence, awareness, treatment and control of dyslipidemia among adults in Northwestern China: the cardiovascular risk survey 
The aim of this study was to estimate the prevalence, awareness, treatment, and control of dyslipidemia in Xinjiang, China.
Stratified sampling method was used to select a representative sample of the general population including Chinese Han, Uygur, and Kazak in this geographic area. Seven cities were chosen. Based on the government records of registered residences, one participant was randomly selected from each household. The eligibility criterion for the study was ≥ 35 years of age.
A total of 14,618 participants (5,757 Han, 4,767 Uygur, and 4,094 Kazak), were randomly selected from 26 villages in 7 cities. The prevalence of dyslipidemia was 52.72% in the all participants. The prevalence of dyslipidemia was higher in Han than that in the other two ethnic (58.58% in Han, 48.27% in Uygur, and 49.60% in Kazak, P < 0.000). The prevalence of dyslipidemia was higher in men than that in women (56.4% vs. 49.3%, P < 0.000). Among the participants with dyslipidemia, the proportion of those who aware, treat, control of dyslipidemia were 53.67%, 22.51%, 17.09% in Han, 42.19%, 27.78%, 16.20% in Uygur, 37.02%, 21.11%, 17.77% in Kazak.
Dyslipidemia is highly prevalent in Xinjiang. The proportion of participants with dyslipidemia who were aware, treated, and controlled is unacceptably low. These results underscore the urgent need to develop national strategies to improve the prevention, detection, and treatment of dyslipidemia in Xinjiang.
PMCID: PMC3895843  PMID: 24393232
Dyslipidemia; Prevalence; Awareness; Treatment; Control
7.  Expression and Methylation of Mitochondrial Transcription Factor A in Chronic Obstructive Pulmonary Disease Patients with Lung Cancer 
PLoS ONE  2013;8(12):e82739.
Apoptosis plays a central role in the pathogenesis of chronic obstructive pulmonary disease (COPD), and this process can be regulated by mitochondrial transcription factor A (mtTFA). Epigenetics is involved in the regulation and modification of the genes involved in lung cancer and COPD. In this study, we determined the expression of mtTFA and its methylation levels in the COPD patients with lung cancer.
Twenty-one squamous cell lung cancer patients, 11 with COPD and 10 without COPD, undergoing pneumonectomy were enrolled. The apoptotic index (AI) of pulmonary vascular endothelial cells was analyzed by transferase-mediated deoxyuridine triphosphate-biotin nick end labeling assay. The expression of mtTFA mRNA and protein was measured using PCR, immunohistochemistry and Western-blot. Methylation of the mtTFA promoter was detected using bisulfite sequencing PCR.
Compared to the non-COPD group, the AI was higher, and expression of mtTFA mRNA and protein was lower in the COPD group (P<0.001). Expression of the mtTFA protein was positively correlated with FEV1/Pre (r = 0.892, P<0.001), and negatively correlated with AI (r = −0.749, P<0.001) and smoke index (r = −0.763, P<0.001). Percentage of mtTFA promoter methylation in the COPD patients was significantly higher compared to the non-COPD patients (P<0.05).
These results suggest that the expression of mtTFA mRNA and protein is down-regulated in the lung tissue from the COPD patients with squamous cell lung cancer, and the level of mtTFA protein is related to apoptosis of pulmonary vascular endothelial cells. Aberrant mtTFA methylation may also play an important role in the pathogenesis of COPD.
PMCID: PMC3867397  PMID: 24367550
8.  Appropriate Body Mass Index and Waist Circumference Cutoffs for Categorization of Overweight and Central Adiposity among Uighur Adults in Xinjiang 
PLoS ONE  2013;8(11):e80185.
The current overweight and central adiposity guidelines based on Western populations were not consistent with many studied based on the Asian populations. Uighur people live in Xinjiang Uighur Autonomous Region which is located in the center of Asia. Their overweight and central cutoffs were largely unknown. We aimed to identify cutoffs for body mass index (BMI; in kg/m2) and waist circumference (WC; in cm) for categorization of overweight and central adiposity among Uighur adults in Xinjiang.
4767 Uighur participants were selected from the Cardiovascular Risk Survey (CRS) which was carried out from October 2007 to March 2010. The age of the participants were from 35 to 101 years old with the mean age of 50.09 years. Anthropometric data, blood pressure, serum concentration of serum total cholesterol, triglyceride, low density lipoprotein (LDL), high density lipoprotein (HDL) and fasting glucose were documented. The prevalence, sensitivity, specificity and distance on the receiver operating characteristic (ROC) curve of each BMI and waist circumference values were calculated.
The prevalence of hypertension, hypercholesterolemia and hypertriglyceridemia were higher with higher BMI for both men and women. The prevalence of hypertension and hypercholesterolemia were higher with higher waist circumference for both men and women. In women, the prevalence of hypertriglyceridemia was noticed to increase as the waist circumference increased. The shortest distance in the receiver operating characteristic curves for hypertension, dyslipidemia, diabetes, or ≥ 2 of these risk factors suggested a BMI cutoff of 26 and a waist circumference cutoff of 90 cm for both men and women.
Higher cutoffs for BMI and waist circumference are needed in the identification of Uighur patients at high risk of cardiovascular disease.
PMCID: PMC3820640  PMID: 24244645
9.  Treatment with chicken-egg-white or whole-egg extracts maintains and enhances the survival and differentiation of spleen cells 
Cytotechnology  2012;64(5):541-551.
The identification of egg extracts with the ability to maintain and enhance the survival and differentiation of cells would be widely useful in cellular biology research. In this study, we compared the different abilities of spleen cells to survive and differentiate in vivo after permeabilization by five different types of egg extracts. Five types of egg extracts were prepared. The spleen cells from male GFP-transgenic mice were permeabilized by the extracts for 30 min, cultured for 12 days, and then transfused into irradiated female mice. At varying days after transplantation, the percentage of GFP-expressing surviving spleen cells was detected in the peripheral blood by flow cytometry. At 120 days after transplantation, bone marrow cells from the female mice were analyzed for the presence of cells containing the Y chromosome. Surviving GFP-positive spleen cells that had been permeabilized with either chicken-egg-white or whole-egg extracts could be detected in the female mice after transplantation. A lower percentage of GFP-positive cells was also detected after permeabilization by the other extracts tested, and no GFP-positive cells were found in the female mouse transfused with spleen cells permeabilized with Hank’s Buffered Salt Solution (HBSS) as a control. At 120 days after transplantation, the percentage of cells containing a Y chromosome in the bone marrow positively correlated with the percentage of GFP-positive cells in the peripheral blood. After permeabilization by chicken-egg-white or whole-egg extracts, spleen cells demonstrated significantly enhanced survival and differentiation functions compared with the spleen cells treated with the other egg extracts tested. These results show that chicken-egg-white and whole-egg extracts have roles in maintaining and enhancing the survival and differentiation of spleen cells. Therefore, these two types of extracts may be of future use in maintaining the function of stem cells.
PMCID: PMC3432533  PMID: 22350684
GFP-transgenic mice; Spleen cells; Extracts; Cell survival; Cell differentiation
10.  In vivo MRI tracking of iron oxide nanoparticle-labeled human mesenchymal stem cells in limb ischemia 
Stem cell transplantation has been investigated for repairing damaged tissues in various injury models. Monitoring the safety and fate of transplanted cells using noninvasive methods is important to advance this technique into clinical applications.
In this study, lower-limb ischemia models were generated in nude mice by femoral artery ligation. As negative-contrast agents, positively charged magnetic iron oxide nanoparticles (aminopropyltriethoxysilane-coated Fe2O3) were investigated in terms of in vitro labeling efficiency, effects on human mesenchymal stromal cell (hMSC) proliferation, and in vivo magnetic resonance imaging (MRI) visualization. Ultimately, the mice were sacrificed for histological analysis three weeks after transplantation.
With efficient labeling, aminopropyltriethoxysilane-modified magnetic iron oxide nanoparticles (APTS-MNPs) did not significantly affect hMSC proliferation. In vivo, APTS-MNP-labeled hMSCs could be monitored by clinical 3 Tesla MRI for at least three weeks. Histological examination detected numerous migrated Prussian blue-positive cells, which was consistent with the magnetic resonance images. Some migrated Prussian blue-positive cells were positive for mature endothelial cell markers of von Willebrand factor and anti-human proliferating cell nuclear antigen. In the test groups, Prussian blue-positive nanoparticles, which could not be found in other organs, were detected in the spleen.
APTS-MNPs could efficiently label hMSCs, and clinical 3 Tesla MRI could monitor the labeled stem cells in vivo, which may provide a new approach for the in vivo monitoring of implanted cells.
PMCID: PMC3598527  PMID: 23515426
hind-limb ischemia; magnetic resonance imaging; iron oxide particles; stem cell implant
11.  The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors 
PLoS ONE  2012;7(11):e50375.
One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA) was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates human brain volume and reveals novel roles of IL3 in regulating brain development.
PMCID: PMC3511536  PMID: 23226269
12.  Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury 
Stem cell therapy has shown great promise for regenerative repair of injured or diseased tissues. Adipose-derived stem cells (ADSCs) have become increasingly attractive candidates for cellular therapy. Magnetic resonance imaging has been proven to be effective in tracking magnetic-labeled cells and evaluating their clinical relevance after cell transplantation. This study investigated the feasibility of imaging green fluorescent protein-expressing ADSCs (GFP-ADSCs) labeled with superparamagnetic iron oxide particles, and tracked them in vivo with noninvasive magnetic resonance imaging after cell transplantation in a model of mouse carotid artery injury.
GFP-ADSCs were isolated from the adipose tissues of GFP mice and labeled with superparamagnetic iron oxide particles. Intracellular stability, proliferation, and viability of the labeled cells were evaluated in vitro. Next, the cells were transplanted into a mouse carotid artery injury model. Clinical 3 T magnetic resonance imaging was performed immediately before and 1, 3, 7, 14, 21, and 30 days after cell transplantation. Prussian blue staining and histological analysis were performed 7 and 30 days after transplantation.
GFP-ADSCs were found to be efficiently labeled with superparamagnetic iron oxide particles, with no effect on viability and proliferation. Homing of the labeled cells into the injured carotid artery tissue could be monitored by magnetic resonance imaging.
Magnetically labeled ADSCs with expression of GFP can home into sites of vascular injury, and may provide new insights into understanding of cell-based therapy for cardiovascular lesions.
PMCID: PMC3487538  PMID: 23125528
adipose-derived stem cells; carotid artery injury; magnetic resonance imaging; iron oxide particles; cell therapy
13.  Serum Uric Acid Levels Are Associated with Polymorphism in the SAA1 Gene in Chinese Subjects 
PLoS ONE  2012;7(6):e40263.
Serum uric acid (SUA) is a cardiovascular risk marker associated with inflammation. The serum amyloid A protein (SAA) is an inflammatory factor and is associated with cardiovascular disease (CVD). However, the relationship between genetic polymorphisms of SAA and SUA levels has not been studied. The objective of this study was to investigate the association between SUA levels and SAA genetic polymorphisms.
All participants were selected from subjects participating in the Cardiovascular Risk Survey (CRS) study. The single nucleotide polymorphism (SNP) rs12218 of the SAA1 gene was genotyped by using the polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) method. The association of SUA levels with genotypes was assessed by using the general liner mode.
The SNP rs12218 was associated with SUA levels by analyses of a dominate model (P = 0.002) and additive model (P = 0.005), and the difference remained significant after adjustment of sex, age, obesity, ethnicity, HDL-C, alcohol intake, smoking, and creatinine (P = 0.006 and P = 0.023, respectively). The TT genotype was associated with an increased SUA concentration of 39.34 mmol/L (95% confidence interval [CI], 3.61–75.06, P = 0.031) compared with the CC genotype, and the TT genotype was associated with an increased SUA concentration of 2.48 mmol/L (95% CI, 6.86–38.10; P = 0.005) compared with the CT genotype.
The rs12218 SNP in the SAA1 gene was associated with SUA levels in Chinese subjects, indicating that carriers of the T allele of rs12218 have a high risk of hyperuricemia.
PMCID: PMC3386962  PMID: 22768267
14.  Type 2 Diabetes in Xinjiang Uygur Autonomous Region, China 
PLoS ONE  2012;7(4):e35270.
The aim of this study was to estimate the prevalence and distribution of type 2 diabetes and to determine the status of type 2 diabetes awareness, treatment, and control in Xinjiang, China. Our data came from the Cardiovascular Risk Survey (CRS) study designed to investigate the prevalence and risk factors for cardiovascular diseases in Xinjiang from October 2007 to March 2010. A total of 14 122 persons (5583 Hans, 4620 Uygurs, and 3919 Kazaks) completed the survey and examination. Diabetes was defined by the American Diabetes Association 2009 criteria.
Methodology/Principal Findings
Overall, 9.26% of the Han, 6.23% of the Uygur, and 3.65% of the Kazak adults aged ≥35 years had diabetes. Among diabetes patients, only 53.0% were aware of their blood glucose level, 26.7% were taking hypoglycemic agents, and 10.4% achieved blood glucose control in Han, 35.8% were aware of their blood glucose level, 7.3% were taking hypoglycemic agents, and 3.13% achieved blood glucose control in Uygur, and 23.8% were aware of their blood glucose level, 6.3% were taking hypoglycemic agents, and 1.4% achieved blood glucose control in Kazak, respectively.
Our results indicate that diabetes is highly prevalent in Xinjiang. The percentages of those with diabetes who are aware, treated, and controlled are unacceptably low. These results underscore the urgent need to develop national strategies to improve prevention, detection, and treatment of diabetes in Xinjiang, the west China.
PMCID: PMC3323648  PMID: 22506076
15.  IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe–/– mice  
The Journal of Clinical Investigation  2011;121(9):3564-3577.
IgE has a key role in the pathogenesis of allergic responses through its ability to activate mast cells via the receptor FcεR1. In addition to mast cells, many cell types implicated in atherogenesis express FcεR1, but whether IgE has a role in this disease has not been determined. Here, we demonstrate that serum IgE levels are elevated in patients with myocardial infarction or unstable angina pectoris. We found that IgE and the FcεR1 subunit FcεR1α were present in human atherosclerotic lesions and that they localized particularly to macrophage-rich areas. In mice, absence of FcεR1α reduced inflammation and apoptosis in atherosclerotic plaques and reduced the burden of disease. In cultured macrophages, the presence of TLR4 was required for FcεR1 activity. IgE stimulated the interaction between FcεR1 and TLR4, thereby inducing macrophage signal transduction, inflammatory molecule expression, and apoptosis. These IgE activities were reduced in the absence of FcεR1 or TLR4. Furthermore, IgE activated macrophages by enhancing Na+/H+ exchanger 1 (NHE1) activity. Inactivation of NHE1 blocked IgE-induced macrophage production of inflammatory molecules and apoptosis. Cultured human aortic SMCs (HuSMCs) and ECs also exhibited IgE-induced signal transduction, cytokine expression, and apoptosis. In human atherosclerotic lesions, SMCs and ECs colocalized with IgE and TUNEL staining. This study reveals what we believe to be several previously unrecognized IgE activities that affect arterial cell biology and likely other IgE-associated pathologies in human diseases.
PMCID: PMC3163955  PMID: 21821913
16.  Genome Sequence of the Milbemycin-Producing Bacterium Streptomyces bingchenggensis▿  
Journal of Bacteriology  2010;192(17):4526-4527.
Streptomyces bingchenggensis is a soil-dwelling bacterium producing the commercially important anthelmintic macrolide milbemycins. Besides milbemycins, the insecticidal polyether antibiotic nanchangmycin and some other antibiotics have also been isolated from this strain. Here we report the complete genome sequence of S. bingchenggensis. The availability of the genome sequence of S. bingchenggensis should enable us to understand the biosynthesis of these structurally intricate antibiotics better and facilitate rational improvement of this strain to increase their titers.
PMCID: PMC2937363  PMID: 20581206
17.  4,5-Dicarb­oxy­naphthalene-1,8-dicarb­oxy­lic anhydride–1,10-phenanthroline (1/1) 
In the crystal structure of the title 1:1 adduct, C12H8N2·C14H6O7, the carboxyl groups are involved in inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into centrosymmetric dimers. These dimers are further linked by inter­molecular O—H⋯N hydrogen bonds. C—H⋯O inter­actions also occur between the 1,10-phenanthroline (phen) and 4,5-dicarb­oxy­naphthalene-1,8-dicarb­oxy­lic anhydride (H2NTC) mol­ecules. In addition, the crystal structure exhibits π–π inter­actions of the phen⋯phen and H2NTC⋯H2NTC types with centroid–centroid distances of 3.579 (3) and 3.774 (3) Å, respectively.
PMCID: PMC3051702  PMID: 21523132
18.  Genome-Wide Association Study Identifies ALDH7A1 as a Novel Susceptibility Gene for Osteoporosis 
PLoS Genetics  2010;6(1):e1000806.
Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08×10−9, odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP's relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39×10−6), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis.
Author Summary
Osteoporosis is a major health concern worldwide. It is a highly heritable disease characterized mainly by low bone mineral density (BMD) and/or osteoporotic fractures. However, the specific genetic variants determining risk for low BMD or OF are largely unknown. Here, taking advantage of recent technological advances in human genetics, we performed a genome-wide association study and follow-up validation studies to identify genetic variants for osteoporosis. By examining a total of 11,568 individuals from Chinese and Caucasian populations, we discovered a susceptibility gene, ALDH7A1, which is associated with hip osteoporotic fracture and BMD. ALDH7A1 might inhibit osteoblast proliferation and decrease bone formation. Our finding opens a new avenue for exploring the pathophysiology of osteoporosis.
PMCID: PMC2794362  PMID: 20072603
19.  Ameliorative effects of lutein on non-alcoholic fatty liver disease in rats 
AIM: To investigate the therapeutic effects of lutein against non-alcoholic fatty liver disease (NAFLD) and the related underlying mechanism.
METHODS: After 9 d of acclimation to a constant temperature-controlled room (20 °C-22 °C) under 12 h light/dark cycles, male Sprague-Darley rats were randomly divided into two groups and fed a standard commercial diet (n = 8) or a high-fat diet (HFD) (n = 32) for 10 d. Animals receiving HFD were then randomly divided into 4 groups and administered with 0, 12.5, 25, or 50 mg/kg (body weight) per day of lutein for the next 45 d. At the end of the experiment, the perinephric and abdominal adipose tissues of the rats were isolated and weighed. Additionally, serum and liver lipid metabolic condition parameters were measured, and liver function and insulin resistance state indexes were assessed. Liver samples were collected and stained with hematoxylin eosin and Oil Red O, and the expression of the key factors related to insulin signaling and lipid metabolism in the liver were detected using Western blot and real-time polymerase chain reaction analyses.
RESULTS: Our data showed that after being fed a high-fat diet for 10 d, the rats showed a significant gain in body weight, energy efficiency, and serum total cholesterol (TC) and triglyceride (TG) levels. Lutein supplementation induced fat loss in rats fed a high-fat diet, without influencing body weight or energy efficiency, and decreased serum TC and hepatic TC and TG levels. Moreover, lutein supplementation decreased hepatic levels of lipid accumulation and glutamic pyruvic transaminase content, and also improved insulin sensitivity. Lutein administration also increased the expression of key factors in hepatic insulin signaling, such as insulin receptor substrate-2, phosphatidylinositol 3-kinase, and glucose transporter-2 at the gene and protein levels. Furthermore, high-dose lutein increased the expression of peroxisome proliferators activated receptor-α and sirtuin 1, which are associated with lipid metabolism and insulin signaling.
CONCLUSION: These results demonstrate that lutein has positive effects on NAFLD via the modulation of hepatic lipid accumulation and insulin resistance.
PMCID: PMC4499348  PMID: 26185377
Lutein; Non-alcoholic fatty liver disease; Insulin resistance; Sirtuin 1; Peroxisome proliferators activated receptor-α
20.  Genome-scale long noncoding RNA expression pattern in squamous cell lung cancer 
Scientific Reports  2015;5:11671.
In this study, we aimed to explore the long noncoding RNA expression pattern in squamous cell lung cancer (SQCC) on a genome-wide scale. Total RNAs were extracted from 16 lung SQCC patients’ normal and matched lung cancer tissues by Trizol reagent. The expression level of genome-wide scale lncRNA and mRNA was determined by microarray. qRT-PCR was used to validate the lncRNA expression level in 47 patients. Data analyses were performed using R and Bioconductor. A total of 2,748 up and 852 down regulated probes were identified to be significantly and differentially expressed in tumor tissues. The annotation result of their co-expressed mRNAs showed that the most significantly related category of GO analysis was development and differentiation, while the most significantly related pathway was cell cycle. Subgroup analysis identified that 46 and 18 probes were specifically differentially expressed in smoking and moderately differentiated tumors, respectively. Our study indicated that clusters of lncRNAs were significantly and differentially expressed in SQCC compared with normal tissues in the same subject. They may exert a significant role in lung cancer development and could be potential targets for future treatment of SQCC.
PMCID: PMC4498179  PMID: 26159226
21.  Quantitative Proteomic Analysis of BHK-21 Cells Infected with Foot-and-Mouth Disease Virus Serotype Asia 1 
PLoS ONE  2015;10(7):e0132384.
Stable isotope labeling with amino acids in cell culture (SILAC) was used to quantitatively study the host cell gene expression profile, in order to achieve an unbiased overview of the protein expression changes in BHK-21 cells infected with FMDV serotype Asia 1. The SILAC-based approach identified overall 2,141 proteins, 153 of which showed significant alteration in the expression level 6 h post FMDV infection (57 up-regulated and 96 down-regulated). Among these proteins, six cellular proteins, including three down-regulated (VPS28, PKR, EVI5) and three up-regulated (LYPLA1, SEC62 and DARs), were selected according to the significance of the changes and/or the relationship with PKR. The expression level and pattern of the selected proteins were validated by immunoblotting and confocal microscopy. Furthermore, the functions of these cellular proteins were assessed by small interfering RNA-mediated depletion, and their functional importance in the replication of FMDV was demonstrated by western blot, reverse transcript PCR (RT-PCR) and 50% Tissue Culture Infective Dose (TCID50). The results suggest that FMDV infection may have effects on the expression of specific cellular proteins to create more favorable conditions for FMDV infection. This study provides novel data that can be utilized to understand the interactions between FMDV and the host cell.
PMCID: PMC4498813  PMID: 26161868
22.  Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis 
Cell Cycle  2014;13(12):1958-1969.
Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in southern China and Southeast Asia, with the highest metastasis rate among head and neck cancers. The mechanisms underlying NPC progression remain poorly understood. Genome-wide expression profiling on 18 NPC vs. 18 noncancerous nasopharyngeal tissues together with GeneGo pathway analysis and expression verification in NPC cells and tissues revealed a potential role of urokinase-type plasminogen activator receptor (uPAR) in NPC progression, which has not been investigated in NPC. We then observed that uPAR expression is increased in poorly differentiated, highly metastatic NPC cells compared with lowly metastatic cells or differentiated NPC cells. In vitro studies demonstrated that uPAR regulates NPC cell growth, colony formation, migration, and invasion and promotes the epithelial–mesenchymal transition (EMT). Additional tumor xenograft and spontaneous metastasis experiments revealed that uPAR promotes NPC cell growth and metastasis in vivo. The JAK–STAT pathway is involved in uPAR-regulated signaling in NPC cells as determined by immunoblotting. Moreover, uPAR-mediated growth and motility is partially abolished upon treatment with the Jak1/Jak2 inhibitor INCB018424. We suppressed uPA expression in uPAR-overexpressing NPC cells and found that uPAR-mediated cellular growth and motility is not exclusively dependent on uPA. In summary, uPAR is a significant regulator of NPC progression and could serve as a promising therapeutic target.
PMCID: PMC4111759  PMID: 24763226
uPAR; nasopharyngeal carcinoma; JAK; STAT; genome-wide expression profiling; tumor growth; metastasis
23.  Oleanolic acid induces mitochondrial-dependent apoptosis and G0/G1 phase arrest in gallbladder cancer cells 
Oleanolic acid (OA), a naturally occurring triterpenoid, exhibits potential antitumor activity in many tumor cell lines. Gallbladder carcinoma is the most common malignancy of the biliary tract, and is a highly aggressive tumor with an extremely poor prognosis. Unfortunately, the effects of OA on gallbladder carcinoma are unknown. In this study, we investigated the effects of OA on gallbladder cancer cells and the underlying mechanism. The results showed that OA inhibits proliferation of gallbladder cancer cells in a dose-dependent and time-dependent manner on MTT and colony formation assay. A flow cytometry assay revealed apoptosis and G0/G1 phase arrest in GBC-SD and NOZ cells. Western blot analysis and a mitochondrial membrane potential assay demonstrated that OA functions through the mitochondrial apoptosis pathway. Moreover, this drug inhibited tumor growth in nude mice carrying subcutaneous NOZ tumor xenografts. These data suggest that OA inhibits proliferation of gallbladder cancer cells by regulating apoptosis and the cell cycle process. Thus, OA may be a promising drug for adjuvant chemotherapy in gallbladder carcinoma.
PMCID: PMC4472077  PMID: 26109845
oleanolic acid; gallbladder carcinoma; apoptosis; cell cycle arrest; mitochondrial pathway
24.  IL-10 Genetic Polymorphisms Were Associated with Valvular Calcification in Han, Uygur and Kazak Populations in Xinjiang, China 
PLoS ONE  2015;10(6):e0128965.
Valvular calcification occurs via ongoing endothelial injury associated with inflammation. IL-10 is an anti-inflammatory cytokine and 75% of the variation in IL-10 production is genetically determined. However, the relationship between genetic polymorphisms of IL-10 and valvular calcification has not been studied. The objective of this study was to investigate the association between valvular calcification and IL-10 genetic polymorphisms in the Han, Uygur and Kazak populations in China.
Patients and Methods
All of the participants were selected from subjects participating in the Cardiovascular Risk Survey (CRS) study. The single nucleotide polymorphisms (SNPs) rs1800871 and rs1800872 of the IL-10 gene were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Three independent case-control studies involving the Han population, the Uygur population and the Kazak population were used in the analysis.
For the Han and Kazak populations, rs1800871 was found to be associated with valvular calcification in the recessive model, and the difference remained statistically significant following multivariate adjustment (p<0.001, p=0.031, respectively). For the Han, Uygur and Kazak populations, rs1800872 was found to be associated with valvular calcification in the dominant model, and the difference remained statistically significant following multivariate adjustment (p<0.001, p=0.009, and p=0.023,respectively)
Both rs1800871 and rs1800872 of the IL-10 gene are associated with valvular calcification in the Han and Kazak populations in China. Rs1800872 is also associated with valvular calcification in the Uygur population.
PMCID: PMC4454577  PMID: 26039365
25.  Select aging biomarkers based on telomere length and chronological age to build a biological age equation 
Age  2014;36(3):9639.
The purpose of this study is to build a biological age (BA) equation combining telomere length with chronological age (CA) and associated aging biomarkers. In total, 139 healthy volunteers were recruited from a Chinese Han cohort in Beijing. A genetic index, renal function indices, cardiovascular function indices, brain function indices, and oxidative stress and inflammation indices (C-reactive protein [CRP]) were measured and analyzed. A BA equation was proposed based on selected parameters, with terminal telomere restriction fragment (TRF) and CA as the two principal components. The selected aging markers included mitral annulus peak E anterior wall (MVEA), intima-media thickness (IMT), cystatin C (CYSC), D-dimer (DD), and digital symbol test (DST). The BA equation was: BA = −2.281TRF + 26.321CYSC + 0.025DD − 104.419MVEA + 34.863IMT − 0.265DST + 0.305CA + 26.346. To conclude, telomere length and CA as double benchmarks may be a new method to build a BA.
PMCID: PMC4082565  PMID: 24659482
Telomere length; Biological age; Chronological age; Aging markers

Results 1-25 (8462)