Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Progranulin (GP88) tumor tissue expression is associated with increased risk of recurrence in breast cancer patients diagnosed with estrogen receptor positive invasive ductal carcinoma 
GP88 (progranulin) has been implicated in tumorigenesis and resistance to anti-estrogen therapies for estrogen receptor positive (ER+) breast cancer. Previous pathological studies showed that GP88 is expressed in invasive ductal carcinoma (IDC), but not in normal mammary epithelial tissue, benign lesions or lobular carcinoma. Based on these results, the present study examines GP88 prognostic significance in association with recurrence and death risks for ER+ IDC patients.
Two retrospective multi-site clinical studies examined GP88 expression by immunohistochemistry (IHC) analysis of paraffin-embedded breast tumor tissue sections from ER+ IDC patients (lymph node positive and negative, stage 1 to 3) in correlation with patients' survival outcomes. The training study established a GP88 cut-off value associated with decreased disease-free (DFS) and overall (OS) survivals. The validation study verified the GP88 cut-off value and compared GP88 prognostic information with other prognostic factors, particularly tumor size, grade, disease stage and lymph node status in multivariate analysis.
GP88 expression is associated with a statistically significant increase in recurrence risk for ER+ IDC patients. The training study established that GP88 3+ score was associated with decreased DFS (P = 0.0004) and OS (P = 0.0036). The independent validation study verified that GP88 3+ score was associated with a 5.9-fold higher hazard of disease recurrence and a 2.5-fold higher mortality hazard compared to patients with tumor GP88 < 3+. GP88 remained an independent risk predictor after considering age, ethnicity, nodal status, tumor size, tumor grade, disease stage, progesterone receptor expression and treatments.
The survival factor GP88 is a novel prognostic biomarker, predictive of recurrence risk and increased mortality for non-metastatic ER+ IDC patients. Of importance, our data show that GP88 continues to be a prognostic factor even after five years. These results also provide evidence that GP88 provides prognostic information independent of tumor and clinical characteristics and would support prospective study to examine whether GP88 expression could help stratify patients with ER+ tumors for adjuvant therapy.
PMCID: PMC3496144  PMID: 22316048
2.  Increased Circulating Level of the Survival Factor GP88 (Progranulin) in the Serum of Breast Cancer Patients When Compared to Healthy Subjects 
GP88 (PC-Cell Derived Growth Factor, progranulin) is a glycoprotein overexpressed in breast tumors and involved in their proliferation and survival. Since GP88 is secreted, an exploratory study was established to compare serum GP88 level between breast cancer patients (BC) and healthy volunteers (HV).
An IRB approved prospective study enrolled 189 stage 1–4 BC patients and 18 HV. GP88 serum concentration was determined by immunoassay.
Serum GP88 level was 28.7 + 5.8 ng/ml in HV and increased to 40.7 + 16.0 ng/ml (P = 0.007) for stage 1–3 and 45.3 + 23.3 ng/ml (P = 0.0007) for stage 4 BC patients. There was no correlation between the GP88 level and BC characteristics such as age, race, tumor grade, ER, PR and HER-2 expression.
These data suggest that serial testing of serum GP88 levels may have value as a circulating biomarker for detection, monitoring and follow up of BC.
PMCID: PMC3140268  PMID: 21792312
progranulin; GP88; breast cancer; biomarker
3.  GP88 (PC-Cell Derived Growth Factor, progranulin) stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells 
BMC Cancer  2011;11:231.
Aromatase inhibitors (AI) that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+) breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance. Our laboratory has characterized an autocrine growth factor overexpressed in invasive ductal carcinoma named PC-Cell Derived Growth Factor (GP88), also known as progranulin. In the present study, we investigated the role GP88 on the acquisition of resistance to letrozole in ER+ breast cancer cells
We used two aromatase overexpressing human breast cancer cell lines MCF-7-CA cells and AC1 cells and their letrozole resistant counterparts as study models. Effect of stimulating or inhibiting GP88 expression on proliferation, anchorage-independent growth, survival and letrozole responsiveness was examined.
GP88 induced cell proliferation and conferred letrozole resistance in a time- and dose-dependent fashion. Conversely, naturally letrozole resistant breast cancer cells displayed a 10-fold increase in GP88 expression when compared to letrozole sensitive cells. GP88 overexpression, or exogenous addition blocked the inhibitory effect of letrozole on proliferation, and stimulated survival and soft agar colony formation. In letrozole resistant cells, silencing GP88 by siRNA inhibited cell proliferation and restored their sensitivity to letrozole.
Our findings provide information on the role of an alternate growth and survival factor on the acquisition of aromatase inhibitor resistance in ER+ breast cancer.
PMCID: PMC3129588  PMID: 21658239
4.  Proepithelin is an autocrine growth factor for bladder cancer 
Carcinogenesis  2009;30(5):861-868.
The growth factor proepithelin functions as an important regulator of proliferation and motility. Proepithelin is overexpressed in a great variety of cancer cell lines and clinical specimens of breast, ovarian and renal cancer, as well as glioblastomas. Using recombinant proepithelin on 5637 transitional cell carcinoma-derived cells, we have shown previously that proepithelin plays a critical role in bladder cancer by promoting motility of bladder cancer cells. In this study, we used the ONCOMINE database and gene microarray analysis tool to analyze proepithelin expression in several bladder cancer microarray studies. We found a statistically significant increase in proepithelin messenger RNA expression in bladder cancers vis-à-vis non-neoplastic tissues, and this was associated with pathologic and prognostic parameters. Targeted downregulation of proepithelin in T24 transitional carcinoma cells with small hairpin RNA inhibited both Akt and mitogen-activated protein kinase pathways, severely reduced the ability of T24 cells to proliferate in the absence of serum and inhibited migration, invasion and wound healing. In support of these in vitro results, we discovered that proepithelin expression was significantly upregulated in invasive bladder cancer tissues compared with normal urothelium. In addition, proepithelin was secreted in the urine, where it was detectable by immunoblotting and enzyme-linked immunosorbent assay. Collectively, these results support the hypothesis that proepithelin may play a critical role as an autocrine growth factor in the establishment and progression of bladder cancer and suggest that proepithelin may prove a novel biomarker for the diagnosis and prognosis of bladder neoplasms.
PMCID: PMC2675649  PMID: 19237611
5.  Rab-Regulated Interaction of Early Endosomes with Lipid Droplets 
Biochimica et biophysica acta  2007;1773(6):784-793.
Recent studies indicate that lipid droplets isolated from a variety of different cells are rich in proteins known to regulate membrane traffic. Among these proteins are multiple Rab GTPases. Rabs are GTP switches that regulate intracellular membrane traffic through an ability to control membrane-membrane docking as well as vesicle motility. Here we present evidence that the multiple Rabs associated with droplets have a function in regulating membrane traffic. Droplet Rabs are removed by Rab GDP-dissociation inhibitor (RabGDI) in a GDP-dependent reaction, and are recruited to Rab-depleted droplets from cytosol in a GTP-dependent reaction. Rabs also control the recruitment of the early endosome (EE) marker EEA1 from cytosol. We use an in vitro reconstitution assay to show that transferrin receptor positive EEs bind to the droplet in a GTP/Rab-dependent reaction that appears not to lead to membrane fusion. This docking reaction is insensitive to ATPγs but is blocked by ATP. Finally, we show that when GTP bound active or GDP bound inactive Rab5 is targeted to the droplet, the active form recruits EEA1. We conclude that the Rabs associated with droplets may be capable of regulating the transient interaction of specific membrane systems, probably to transport lipids between membrane compartments.
PMCID: PMC2676670  PMID: 17395284
6.  Evidence that Mono-ADP-Ribosylation of CtBP1/BARS Regulates Lipid Storage 
Molecular Biology of the Cell  2007;18(8):3015-3025.
Mono-ADP-ribosylation is emerging as an important posttranslational modification that modulates a variety of cell signaling pathways. Here, we present evidence that mono-ADP-ribosylation of the transcriptional corepressor C terminal binding protein, brefeldin A (BFA)-induced ADP-ribosylated substrate (CtBP1/BARS) regulates neutral lipid storage in droplets that are surrounded by a monolayer of phospholipid and associated proteins. CtBP1/BARS is an NAD-binding protein that becomes ribosylated when cells are exposed to BFA. Both endogenous lipid droplets and droplets enlarged by oleate treatment are lost after 12-h exposure to BFA. Lipid loss requires new protein synthesis, and it is blocked by multiple ribosylation inhibitors, but it is not stimulated by disruption of the Golgi apparatus or the endoplasmic reticulum unfolded protein response. Small interfering RNA knockdown of CtBP1/BARS mimics the effect of BFA, and mouse embryonic fibroblasts derived from embryos that are deficient in CtBP1/BARS seem to be defective in lipid accumulation. We conclude that mono-ADP-ribosylation of CtBP1/BARS inactivates its repressor function, which leads to the activation of genes that regulate neutral lipid storage.
PMCID: PMC1949384  PMID: 17538025
7.  The Growth Factor Granulin Interacts with Cyclin T1 and Modulates P-TEFb-Dependent Transcription 
Molecular and Cellular Biology  2003;23(5):1688-1702.
Cyclin T1, together with the kinase CDK9, is a component of the transcription elongation factor P-TEFb which binds the human immunodeficiency virus type 1 (HIV-1) transactivator Tat. P-TEFb facilitates transcription by phosphorylating the carboxy-terminal domain (CTD) of RNA polymerase II. Cyclin T1 is an exceptionally large cyclin and is therefore a candidate for interactions with regulatory proteins. We identified granulin as a cyclin T1-interacting protein that represses expression from the HIV-1 promoter in transfected cells. The granulins, mitogenic growth factors containing repeats of a cysteine-rich motif, were reported previously to interact with Tat. We show that granulin formed stable complexes in vivo and in vitro with cyclin T1 and Tat. Granulin bound to the histidine-rich domain of cyclin T1, which was recently found to bind to the CTD, but not to cyclin T2. Binding of granulin to P-TEFb inhibited the phosphorylation of a CTD peptide. Granulin expression inhibited Tat transactivation, and tethering experiments showed that this effect was due, at least in part, to a direct action on cyclin T1 in the absence of Tat. In addition, granulin was a substrate for CDK9 but not for the other transcription-related kinases CDK7 and CDK8. Thus, granulin is a cellular protein that interacts with cyclin T1 to inhibit transcription.
PMCID: PMC151712  PMID: 12588988

Results 1-7 (7)