Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Host Cell Reactivation and Transcriptional Activation of Carboplatin-Modified BRCA1 
The breast cancer susceptibility gene 1 (BRCA1) has been shown to maintain genomic stability through multiple functions in the regulation of DNA damage repair and transcription. Its translated BRCT (BRCA1 C-terminal domain) acts as a strong transcriptional activator. BRCA1 damaged by carboplatin treatment may lead to a loss of such functions. To address the possibility of the BRCA1 gene as a therapeutic target for carboplatin, we investigated the functional consequences of the 3′-terminal region of human BRCA1 following in vitro platination with carboplatin. A reduction in cellular BRCA1 repair of carboplatin-treated plasmid DNA, using a host cell reactivation assay, was dependent on the platination levels on the reporter gene. The transcriptional transactivation activity of the drug-modified BRCA1, assessed using a one-hybrid GAL4 transcriptional assay, was inversely proportional to the carboplatin doses. The data emphasized the potential of the BRCA1 gene to be a target for carboplatin treatment.
PMCID: PMC3964185  PMID: 24678242
BRCA1; carboplatin; host cell reactivation; transcriptional activity; cancer chemotherapy
2.  Cellular responses of BRCA1-defective and triple-negative breast cancer cells and in vitro BRCA1 interactions induced by metallo-intercalator ruthenium(II) complexes containing chloro-substituted phenylazopyridine 
BMC Cancer  2014;14:73.
Triple-negative breast cancer (TNBC) is defined by the absence of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Breast cancers with a BRCA1 mutation are also frequently triple-negative. Currently, there is a lack of effective therapies and known specific molecular targets for this aggressive breast cancer subtype. To address this concern, we have explored the cellular responses of BRCA1-defective and triple-negative breast cancer cells, and in vitro BRCA1 interactions induced by the ruthenium(II) complexes containing the bidentate ligand, 5-chloro-2-(phenylazo)pyridine.
Triple-negative MDA-MB-231, BRCA1-defective HCC1937 and BRCA1-competent MCF-7 breast cancer cell lines were treated with ruthenium(II) complexes. The cytoxoxicity of ruthenium-induced breast cancer cells was evaluated by a real time cellular analyzer (RTCA). Cellular uptake of ruthenium complexes was determined by ICP-MS. Cell cycle progression and apoptosis were assessed using propidium iodide and Annexin V flow cytometry. The N-terminal BRCA1 RING protein was used for conformational and functional studies using circular dichroism and in vitro ubiquitination.
HCC1937 cells were significantly more sensitive to the ruthenium complexes than the MDA-MB-231 and MCF-7 cells. Treatment demonstrated a higher degree of cytotoxicity than cisplatin against all three cell lines. Most ruthenium atoms were retained in the nuclear compartment, particularly in HCC1937 cells, after 24 h of incubation, and produced a significant block at the G2/M phase. An increased induction of apoptotic cells as well as an upregulation of p53 mRNA was observed in all tested breast cancer cells. It was of interest that BRCA1 mRNA and replication of BRCA1-defective cells were downregulated. Changes in the conformation and binding constants of ruthenium-BRCA1 adducts were observed, causing inactivation of the RING heterodimer BRCA1/BARD1-mediated E3 ubiquitin ligase activity.
This study has revealed the ability of ruthenium complexes to inhibit cell proliferation, induce cell cycle progression and apoptosis. Ruthenium treatment upregulated the marker genes involved in apoptosis and cell cycle progression while it downregulated BRCA1 mRNA and replication of HCC1937 cells. Our results could provide an alternative approach to finding effective therapeutic ruthenium-based agents with promising anticancer activity, and demonstrated that the BRCA1 RING domain protein was a promising therapeutic target for breast cancers.
PMCID: PMC3933379  PMID: 24507701
Ruthenium; BRCA1; Triple-negative; Cell cycle; Apoptosis; BRCA1; Ubiquitination
3.  Altered DNA Binding and Amplification of Human Breast Cancer Suppressor Gene BRCA1 Induced by a Novel Antitumor Compound, [Ru(η6-p-phenylethacrynate)Cl2(pta)] 
The ruthenium-based complex [Ru(η6-p-phenylethacrynate)Cl2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo-[]decane), termed ethaRAPTA, is an interesting antitumor compound. The elucidation of the molecular mechanism of drug activity is central to the drug development program. To this end, we have characterized the ethaRAPTA interaction with DNA, including probing the sequence specific modified DNA structural stability and DNA amplification using the breast cancer suppressor gene 1 (BRCA1) of human breast and colon adenocarcinoma cell lines as models. The preference of ethaRAPTA base binding is in the order A > G > T > C. Once modified, the ethaRAPTA-induced BRCA1 structure has higher thermal stability than the modified equivalents of its related compound, RAPTA-C. EthaRAPTA exhibits a higher efficiency than RAPTA-C in inhibiting BRCA1 amplification. With respect to both compounds, the inhibition of BRCA1 amplification is more effective in an isolated system than in cell lines. These data provide evidence that will help to understand the process of elucidating the pathways involved in the response induced by ethaRAPTA.
PMCID: PMC3497320  PMID: 23202946
BRCA1; DNA adducts; DNA amplification; ethaRAPTA; tumor suppressor gene
4.  A DNA Repair BRCA1 Estrogen Receptor and Targeted Therapy in Breast Cancer 
BRCA1 is a key mediator of DNA repair pathways and participates in the maintenance of the genomic integrity of cells. The control of DNA damage repair mechanisms by BRCA1 is of great interest since molecular defects in this pathway may reflect a predictive value in terms of a cell’s sensitivity to DNA damaging agents or anticancer drugs. BRCA1 has been found to exhibit a hormone-dependent pattern of expression in breast cells. Wild-type BRCA1 is required for the inhibition of the growth of breast tumor cells in response to the pure steroidal ERα antagonist fulvestrant. Also a loss of BRCA1-mediated transcriptional activation of ERα expression results in increased resistance to ERα antagonists. Platinum-based drugs, poly(ADP-ribose) polymerase (PARP) inhibitors, and their combination are currently included in chemotherapy regimens for breast cancer. Preclinical and clinical studies in a BRCA1-defective setting have recently indicated a rationale for the use of these compounds against hereditary breast cancers. Initial findings indicate that neoadjuvant use of cisplatin results in high rates of complete pathological response in patients with breast cancer who have BRCA1 mutations. Cisplatin produces a better response in triple-negative breast cancer (TNBC) than in non-TNBC diseases in both the neoadjuvant and adjuvant settings. This implies that TNBC cells may harbor a dysfunctional BRCA1 repair pathway.
PMCID: PMC3509617  PMID: 23203101
BRCA1; estrogen receptor; fulvestrant; antiestrogen; triple-negative breast cancer
5.  In Vitro Enhanced Sensitivity to Cisplatin in D67Y BRCA1 RING Domain Protein 
BRCA1 is a tumor suppressor protein involved in maintaining genomic integrity through multiple functions in DNA damage repair, transcriptional regulation, cell cycle checkpoint, and protein ubiquitination. The BRCA1-BARD1 RING complex has an E3 ubiquitin ligase function that plays essential roles in response to DNA damage repair. BRCA1-associated cancers have been shown to confer a hypersensitivity to chemotherapeutic agents. Here, we have studied the functional consequence of the in vitro E3 ubiquitin ligase activity and cisplatin sensitivity of the missense mutation D67Y BRCA1 RING domain. The D67Y BRCA1 RING domain protein exhibited the reduced ubiquitination function, and was more susceptible to the drug than the D67E or wild-type BRCA1 RING domain protein. This evidence emphasized the potential of using the BRCA1 dysfunction as an important determinant of chemotherapy responses in breast cancer.
PMCID: PMC3201098  PMID: 22084573
BRCA1; cisplatin; ubiquitination; cancer chemotherapy

Results 1-5 (5)