PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (69)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Cell death pathway induced by resveratrol-bovine serum albumin nanoparticles in a human ovarian cell line 
Oncology Letters  2015;9(3):1359-1363.
Resveratrol-bovine serum albumin nanoparticles (RES-BSANP) exhibit chemotherapeutic properties, which trigger apoptosis. The aim of the present study was to investigate the caspase-independent cell death pathway induced by RES-BSANP in human ovarian cancer SKOV3 cells and to analyze its mechanism. Morphological changes were observed by apoptotic body/cell nucleus DNA staining using inverted and fluorescence microscopy. The cell death pathway was determined by phosphatidylserine translocation. Western blot analysis was conducted to detect the activation of apoptosis-inducing factor (AIF), cytochrome c (Cyto c) and B-cell lymphoma 2-associated X protein (Bax). Apoptotic body and nuclear condensation and fragmentation were observed simultaneously following treatment with RES-BSANP. RES-BSANP induced apoptosis in a dose-dependent manner in the human ovarian cancer SKOV3 cells. The translocation of AIF from the mitochondria to the cytoplasm occurred earlier than that of Cyto c. In addition, Bax binding to the mitochondria was required for the release of AIF and Cyto c from the mitochondria. The AIF apoptosis pathway may present an alternative caspase-dependent apoptosis pathway in human ovarian cell death induced by RES-BSANP. Elucidation of this pathway may be critical for the treatment of cancer using high doses of RES-BSANP.
doi:10.3892/ol.2015.2851
PMCID: PMC4315083  PMID: 25663913
resveratrol-bovine serum albumin nanoparticles; apoptosis; programmed cell death; caspase-independent
2.  OsGL1-3 is Involved in Cuticular Wax Biosynthesis and Tolerance to Water Deficit in Rice 
PLoS ONE  2015;10(1):e116676.
Cuticular wax covers aerial organs of plants and functions as the outermost barrier against non-stomatal water loss. We reported here the functional characterization of the Glossy1(GL1)-homologous gene OsGL1-3 in rice using overexpression and RNAi transgenic rice plants. OsGL1-3 gene was ubiquitously expressed at different level in rice plants except root and its expression was up-regulated under ABA and PEG treatments. The transient expression of OsGL1-3–GFP fusion protein indicated that OsGL1-3 is mainly localized in the plasma membrane. Compared to the wild type, overexpression rice plants exhibited stunted growth, more wax crystallization on leaf surface, and significantly increased total cuticular wax load due to the prominent changes of C30–C32 aldehydes and C30 primary alcohols. While the RNAi knockdown mutant of OsGL1-3 exhibited no significant difference in plant height, but less wax crystallization and decreased total cuticular wax accumulation on leaf surface. All these evidences, together with the effects of OsGL1-3 on the expression of some wax synthesis related genes, suggest that OsGL1-3 is involved in cuticular wax biosynthesis. Overexpression of OsGL1-3 decreased chlorophyll leaching and water loss rate whereas increased tolerance to water deficit at both seedling and late-tillering stages, suggesting an important role of OsGL1-3 in drought tolerance.
doi:10.1371/journal.pone.0116676
PMCID: PMC4282203  PMID: 25555239
3.  Platelet Rich Plasma Clot Releasate Preconditioning Induced PI3K/AKT/NFκB Signaling Enhances Survival and Regenerative Function of Rat Bone Marrow Mesenchymal Stem Cells in Hostile Microenvironments 
Stem Cells and Development  2013;22(24):3236-3251.
Mesenchymal stem cells (MSCs) have been optimal targets in the development of cell based therapies, but their limited availability and high death rate after transplantation remains a concern in clinical applications. This study describes novel effects of platelet rich clot releasate (PRCR) on rat bone marrow-derived MSCs (BM-MSCs), with the former driving a gene program, which can reduce apoptosis and promote the regenerative function of the latter in hostile microenvironments through enhancement of paracrine/autocrine factors. By using reverse transcription–polymerase chain reaction, immunofluorescence and western blot analyses, we showed that PRCR preconditioning could alleviate the apoptosis of BM-MSCs under stress conditions induced by hydrogen peroxide (H2O2) and serum deprivation by enhancing expression of vascular endothelial growth factor and platelet-derived growth factor (PDGF) via stimulation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT/NF-κB signaling pathways. Furthermore, the effects of PRCR preconditioned GFP-BM-MSCs subcutaneously transplanted into rats 6 h after wound surgery were examined by histological and other tests from days 0–22 after transplantation. Engraftment of the PRCR preconditioned BM-MSCs not only significantly attenuated apoptosis and wound size but also improved epithelization and blood vessel regeneration of skin via regulation of the wound microenvironment. Thus, preconditioning with PRCR, which reprograms BM-MSCs to tolerate hostile microenvironments and enhance regenerative function by increasing levels of paracrine factors through PDGFR-α/PI3K/AKT/NF-κB signaling pathways would be a safe method for boosting the effectiveness of transplantation therapy in the clinic.
doi:10.1089/scd.2013.0064
PMCID: PMC3868358  PMID: 23885779
4.  Marine Nucleosides: Structure, Bioactivity, Synthesis and Biosynthesis 
Marine Drugs  2014;12(12):5817-5838.
Nucleosides are glycosylamines that structurally form part of nucleotide molecules, the building block of DNA and RNA. Both nucleosides and nucleotides are vital components of all living cells and involved in several key biological processes. Some of these nucleosides have been obtained from a variety of marine resources. Because of the biological importance of these compounds, this review covers 68 marine originated nucleosides and their synthetic analogs published up to June 2014. The review will focus on the structures, bioactivities, synthesis and biosynthetic processes of these compounds.
doi:10.3390/md12125817
PMCID: PMC4278203  PMID: 25474189
biological activity; biosynthetic pathway; marine organism; nucleoside; synthesis
5.  An Update on 2,5-Diketopiperazines from Marine Organisms 
Marine Drugs  2014;12(12):6213-6235.
2,5-Diketopiperazines (2,5-DKPs) are an important category of structurally diverse cyclic dipeptides with prominent biological properties. These 2,5-DKPs have been obtained from a variety of natural resources, including marine organisms. Because of the increasing numbers and biological importance of these compounds, this review covers 90 marine originated 2,5-DKPs that were reported from 2009 to the first half-year of 2014. The review will focus on the structure characterizations, biological properties and proposed biosynthetic processes of these compounds.
doi:10.3390/md12126213
PMCID: PMC4278226  PMID: 25532564
2,5-diketopiperazine; marine organism; biosynthetic processes; biological activity
6.  Adenosine A2A receptor deficiency alleviates blast-induced cognitive dysfunction 
Traumatic brain injury (TBI), particularly explosive blast-induced TBI (bTBI), has become the most prevalent injury among military personnel. The disruption of cognitive function is one of the most serious consequences of bTBI because its long-lasting effects prevent survivors fulfilling their active duty and resuming normal civilian life. However, the mechanisms are poorly understood and there is no treatment available. This study investigated the effects of adenosine A2A receptor (A2AR) on bTBI-induced cognitive deficit, and explored the underlying mechanisms. After being subjected to moderate whole-body blast injury, mice lacking the A2AR (A2AR knockout (KO)) showed less severity and shorter duration of impaired spatial reference memory and working memory than wild-type mice did. In addition, bTBI-induced cortical and hippocampal lesions, as well as proinflammatory cytokine expression, glutamate release, edema, cell loss, and gliosis in both early and prolonged phases of the injury, were significantly attenuated in A2AR KO mice. The results suggest that early injury and chronic neuropathological damages are important mechanisms of bTBI-induced cognitive impairment, and that the impairment can be attenuated by preventing A2AR activation. These findings suggest that A2AR antagonism is a potential therapeutic strategy for mild-to-moderate bTBI and consequent cognitive impairment.
doi:10.1038/jcbfm.2013.127
PMCID: PMC3824177  PMID: 23921902
adenosine; brain trauma; cognitive impairment; experimental; neuroprotection
7.  SeqAssist: a novel toolkit for preliminary analysis of next-generation sequencing data 
BMC Bioinformatics  2014;15(Suppl 11):S10.
Background
While next-generation sequencing (NGS) technologies are rapidly advancing, an area that lags behind is the development of efficient and user-friendly tools for preliminary analysis of massive NGS data. As an effort to fill this gap to keep up with the fast pace of technological advancement and to accelerate data-to-results turnaround, we developed a novel software package named SeqAssist ("Sequencing Assistant" or SA).
Results
SeqAssist takes NGS-generated FASTQ files as the input, employs the BWA-MEM aligner for sequence alignment, and aims to provide a quick overview and basic statistics of NGS data. It consists of three separate workflows: (1) the SA_RunStats workflow generates basic statistics about an NGS dataset, including numbers of raw, cleaned, redundant and unique reads, redundancy rate, and a list of unique sequences with length and read count; (2) the SA_Run2Ref workflow estimates the breadth, depth and evenness of genome-wide coverage of the NGS dataset at a nucleotide resolution; and (3) the SA_Run2Run workflow compares two NGS datasets to determine the redundancy (overlapping rate) between the two NGS runs. Statistics produced by SeqAssist or derived from SeqAssist output files are designed to inform the user: whether, what percentage, how many times and how evenly a genomic locus (i.e., gene, scaffold, chromosome or genome) is covered by sequencing reads, how redundant the sequencing reads are in a single run or between two runs. These statistics can guide the user in evaluating the quality of a DNA library prepared for RNA-Seq or genome (re-)sequencing and in deciding the number of sequencing runs required for the library. We have tested SeqAssist using a synthetic dataset and demonstrated its main features using multiple NGS datasets generated from genome re-sequencing experiments.
Conclusions
SeqAssist is a useful and informative tool that can serve as a valuable "assistant" to a broad range of investigators who conduct genome re-sequencing, RNA-Seq, or de novo genome sequencing and assembly experiments.
doi:10.1186/1471-2105-15-S11-S10
PMCID: PMC4251038  PMID: 25349885
SeqAssist; next generation sequencing (NGS); sequencing data analysis; genome-wide coverage; breadth; depth; evenness; genome (re-)sequencing; RNA-Seq; FASTQ; BWA-MEM.
8.  Scorpion Venom Heat-Resistant Peptide (SVHRP) Enhances Neurogenesis and Neurite Outgrowth of Immature Neurons in Adult Mice by Up-Regulating Brain-Derived Neurotrophic Factor (BDNF) 
PLoS ONE  2014;9(10):e109977.
Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2’-dexoxyuridine (BrdU)-positive cells, BrdU- positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.
doi:10.1371/journal.pone.0109977
PMCID: PMC4192587  PMID: 25299676
9.  Antigen Potency and Maximal Efficacy Reveal a Mechanism of Efficient T Cell Activation 
Science signaling  2011;4(176):ra39.
T cell activation, a critical event in adaptive immune responses, follows productive interactions between T cell receptors (TCRs) and antigens, in the form of peptide-bound major histocompatibility complexes (pMHCs) on the surfaces of antigen-presenting-cells. Upon activation, T cells can lyse infected cells, secrete cytokines, such as interferon-γ (IFN-γ), and perform other effector functions with various efficiencies that directly depend on the binding parameters of the TCR-pMHC complex. The mechanism that relates binding parameters to the efficiency of activation of the T cell remains controversial; some studies suggest that the dissociation constant (KD) determines the response (the “affinity model”), whereas others suggest that the off-rate (koff) is critical (the “productive hit rate model”). Here, we used mathematical modeling to show that antigen potency, as determined by the EC50, the functional correlate that is used to support KD-based models, could not be used to discriminate between the affinity and productive hit rate models. Our theoretical work showed that both models predicted a correlation between antigen potency and KD, but only the productive hit rate model predicted a correlation between maximal efficacy (Emax) and koff. We confirmed the predictions made by the productive hit rate model in experiments with cytotoxic T cell clones and a panel of pMHC variants. Therefore, we suggest that the activity of an antigen is determined by both its potency and maximal efficacy. We discuss the implications of our findings to the practical evaluation of T cell activation, for example in adoptive immunotherapies, and relate our work to the pharmacological theory of dose-response.
doi:10.1126/scisignal.2001430
PMCID: PMC4143974  PMID: 21653229
10.  Expression of Indian hedgehog is negatively correlated with APC gene mutation in colorectal tumors 
The regulatory mechanism of Indian hedgehog (IHH) in colorectal carcinogenesis has not been elucidated. In the current study, the expression of IHH were investigated in 7 digestive tract cancer cell lines, and in 10 normal colorectal mucosas (NCs), 30 hyperplastic polyps (HPs), 35 colorectal adenomas (ADs), and 40 colorectal adenocarcinomas (CAs) by semi-quantitative RT-PCR and immunohistochemical staining. Moreover, the mutational status of adenomatous polyposis coli (APC) and β-catenin in these tumors were analyzed by direct sequencing. IHH mRNA was lost in the 4 colon cancer cell lines harboring APC mutation. IHH mRNA was significantly decreased in CAs (0.17 ± 0.22), compared with that in ADs (0.38 ± 0.35) and HPs (0.56 ± 0.38, P < 0.05). IHH protein was expressed at a very low level or absent in both ADs (7.51 ± 11.92) and CAs (5.15 ± 9.21) in comparison to that in HPs (19.47 ± 17.91) and NCs (42.40 ± 13.67, P < 0.05). Moreover, APC mutations were negatively correlated with IHH mRNA expression (Spearman’s R = -0.636, P < 0.01) and IHH protein expression (Spearman’s R = -0.426, P < 0.01). In conclusion, down-regulation of IHH expression might be an early event during the carcinogenesis of colorectal cancer. The activation of Wnt signaling by APC mutation might contribute to the down-regulation or loss of IHH expression in colorectal tumors.
PMCID: PMC4161560  PMID: 25232400
Indian hedgehog; Wnt signaling pathway; colorectal cancer; APC mutation
11.  ΔNp63, CK5/6, TTF-1 and napsin A, a reliable panel to subtype non-small cell lung cancer in biopsy specimens 
Histopathological subtyping of nonsmall cell lung cancer (NSCLC) is currently important in selecting specific therapeutic agents. It can be challenging in distinguishing poorly differentiated lung adenocarcinoma (AC) from squamous cell carcinoma (SCC) on small biopsy samples. This study was aimed to evaluate the utility of a panel of immunohistochemical markers consisting of ΔNp63 (p40), cytokeratins (CK) 5/6, thyroid transcription factor-1 (TTF-1) and napsin A (novel aspartic proteinase of the pepsin family) in subtyping poorly differentiated NSCLC. Forty-eight cases of NSCLC that could not be further classified by examination of hematoxylin-eosin (H&E)-stained slides on biopsy and had subsequent resection specimens were selected. Subtyping of the tumor was based on the resection specimen using the World Health Organization criteria. ΔNp63 was expressed in all 16 SCCs (100%), and was negative in all ACs and LCCs. CK5/6 was positive in 13 of 16 SCCs (81%), and was negative in all ACs and LCCs. TTF-1 was positive in 20 of 25 ACs (80%) and 3 of 7 LCCs (43%), but none of 16 SCCs. Napsin A was positive in 16 of 25 ACs (64%) and was negative in all SCCs and LCCs. Our study shows that a panel including ΔNp63, CK5/6, TTF-1, and napsin A allows correct subclassification of 39 of 48 cases of NSCLC on biopsy and may contribute to refine lung cancer classification in biopsy specimens, remarkably reducing the NSCLC-NOS (not otherwise specified) diagnostic category.
PMCID: PMC4129040  PMID: 25120805
Non-small cell lung carcinoma; adenocarcinoma; squamous cell carcinoma; immunohistochemistry; biopsy
12.  Novel Adamantyl Cannabinoids as CB1 Receptor Probes 
Journal of medicinal chemistry  2013;56(10):3904-3921.
In previous studies compound 1 (AM411), a 3-(1-adamantyl) analog of the phytocannabinoid (−)-Δ8-tetrahydrocannabinol (Δ8-THC) was shown to have improved affinity and selectivity for the CB1 receptor. In this work, we further explored the role of the 1-adamantyl group at the C-3 position in a series of tricyclic cannabinoid analogs modified at the 9-northern aliphatic hydroxyl (NAH) position. Of these, 9-hydroxymethyl hexahydrocannabinol 11 (AM4054) exhibited high CB1 affinity and full agonist profile. In the cAMP assay, the 11-hydroxymethyl cannabinol analog 24 (AM4089) had a partial agonist profile, with high affinity and moderate selectivity for rCB1 over hCB2. In vivo results in rat models of hypothermia and analgesia were congruent with in vitro data. Our in vivo data indicates that 3-(1-adamantyl) substitution, within NAH cannabinergics, imparts improved pharmacological profiles when compared to the corresponding, traditionally used, 3-dimethylheptyl analogs and identifies 11 and 24 as a potential useful in vivo CB1 cannabinergic probes.
doi:10.1021/jm4000775
PMCID: PMC3706088  PMID: 23621789
13.  KIF14 Promotes AKT Phosphorylation and Contributes to Chemoresistance in Triple-Negative Breast Cancer12 
Neoplasia (New York, N.Y.)  2014;16(3):247-256.e2.
Despite evidence that kinesin family member 14 (KIF14) can serve as a prognostic biomarker in various solid tumors, how it contributes to tumorigenesis remains unclear. We observed that experimental decrease in KIF14 expression increases docetaxel chemosensitivity in estrogen receptor–negative/progesterone receptor–negative/human epidermal growth factor receptor 2-negative, “triple-negative” breast cancers (TNBC). To investigate the oncogenic role of KIF14, we used noncancerous human mammary epithelial cells and ectopically expressed KIF14 and found increased proliferative capacity, increased anchorage-independent grown in vitro, and increased resistance to docetaxel but not to doxorubicin, carboplatin, or gemcitabine. Seventeen benign breast biopsies of BRCA1 or BRCA2 mutation carriers showed increased KIF14 mRNA expression by fluorescence in situ hybridization compared to controls with no known mutations in BRCA1 or BRCA2, suggesting increased KIF14 expression as a biomarker of high-risk breast tissue. Evaluation of 34 cases of locally advanced TNBC showed that KIF14 expression significantly correlates with chemotherapy-resistant breast cancer. KIF14 knockdown also correlates with decreased AKT phosphorylation and activity. Live-cell imaging confirmed an insulin-induced temporal colocalization of KIF14 and AKT at the plasma membrane, suggesting a potential role of KIF14 in promoting activation of AKT. An experimental small-molecule inhibitor of KIF14 was then used to evaluate the potential anticancer benefits of downregulating KIF14 activity. Inhibition of KIF14 shows a chemosensitizing effect and correlates with decreasing activation of AKT. Together, these findings show an early and critical role for KIF14 in the tumorigenic potential of TNBC, and therapeutic targeting of KIF14 is feasible and effective for TNBC.
doi:10.1016/j.neo.2014.03.008
PMCID: PMC4094827  PMID: 24784001
TNBC, triple-negative breast cancerestrogen-receptor negative/progesterone-receptor negative/Her2 negative; siRNA, small-interfering RNA; LC50, median lethal concentration
14.  Electroacupuncture at PC6 or ST36 Influences the Effect of Tacrine on the Motility of Esophagus 
Aim. To investigate the mechanisms of gastrointestinal side effects of tacrine, and find treatment methods with electroacupuncture (EA). Methods. Twenty-five healthy cats were randomly divided into 5 groups: gastric-distention group (model group), tacrine group (cholinesterase inhibitor), tacrine + sham acupoint group (control group), tacrine + PC6 (neiguan) group, and tacrine + ST36 (zusanli) group, with 5 cats in each group. Saline 2 mL i.p. was given 30 min before gastric distention in model group. Tacrine 5.6 mg/kg i.p. was given 30 minutes before gastric distention in the other groups. Tacrine + sham acupoint group (control group), tacrine + PC6 group, and tacrine + ST36 group received EA at corresponding acupoints during gastric distention. The frequency of TLESRs and LESP were recorded by using a perfused sleeve assembly. Results. Compared with the model group, tacrine significantly increased the frequency of gastric distention-induced TLESR (P < 0.05) but did not influence the rate of common cavity during TLESR. Tacrine significantly increased the LESP, which could not remain during gastric distention. EA at PC6 could decrease the frequency of TLESR and maintain the increase of LESP, but EA at ST36 did not have these effects. Conclusion. Tacrine can significantly increase the gastric distention-induced transient lower esophageal sphincter relaxations (TLESRs). Electroacupuncture (EA) at PC6 may reverse the above side effect.
doi:10.1155/2014/263489
PMCID: PMC3997975  PMID: 24808917
15.  Identification of Candidate Reference Genes in Perennial Ryegrass for Quantitative RT-PCR under Various Abiotic Stress Conditions 
PLoS ONE  2014;9(4):e93724.
Background
Quantitative real-time reverse-transcriptase PCR (qRT-PCR) is an important technique for analyzing differences in gene expression due to its sensitivity, accuracy and specificity. However, the stability of the expression of reference genes is necessary to ensure accurate qRT-PCR assessment of expression in genes of interest. Perennial ryegrass (Lolium perenne L.) is important forage and turf grass species in temperate regions, but the expression stability of its reference genes under various stresses has not been well-studied.
Methodology/Principal Findings
In this study, 11 candidate reference genes were evaluated for use as controls in qRT-PCR to quantify gene expression in perennial ryegrass under drought, high salinity, heat, waterlogging, and ABA (abscisic acid) treatments. Four approaches – Delta CT, geNorm, BestKeeper and Normfinder were used to determine the stability of expression in these reference genes. The results are consistent with the idea that the best reference genes depend on the stress treatment under investigation. Eukaryotic initiation factor 4 alpha (eIF4A), Transcription elongation factor 1 (TEF1) and Tat binding protein-1 (TBP-1) were the three most stably expressed genes under drought stress and were also the three best genes for studying salt stress. eIF4A, TBP-1, and Ubiquitin-conjugating enzyme (E2) were the most suitable reference genes to study heat stress, while eIF4A, TEF1, and E2 were the three best reference genes for studying the effects of ABA. Finally, Ubiquitin (UBQ), TEF1, and eIF4A were the three best reference genes for waterlogging treatments.
Conclusions/Significance
These results will be helpful in choosing the best reference genes for use in studies related to various abiotic stresses in perennial ryegrass. The stability of expression in these reference genes will enable better normalization and quantification of the transcript levels for studies of gene expression in such studies.
doi:10.1371/journal.pone.0093724
PMCID: PMC3974806  PMID: 24699822
16.  Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering*  
Objective: To deliver cells deep into injectable calcium phosphate cement (CPC) through alginate-chitosan (AC) microcapsules and investigate the biological behavior of the cells released from microcapsules into the CPC. Methods: Mouse osteoblastic MC3T3-E1 cells were embedded in alginate and AC microcapsules using an electrostatic droplet generator. The two types of cell-encapsulating microcapsules were then mixed with a CPC paste. MC3T3-E1 cell viability was investigated using a Wst-8 kit, and osteogenic differentiation was demonstrated by an alkaline phosphatase (ALP) activity assay. Cell attachment in CPC was observed by an environment scanning electron microscopy. Results: Both alginate and AC microcapsules were able to release the encapsulated MC3T3-E1 cells when mixed with CPC paste. The released cells attached to the setting CPC scaffolds, survived, differentiated, and formed mineralized nodules. Cells grew in the pores concomitantly created by the AC microcapsules in situ within the CPC. At Day 21, cellular ALP activity in the AC group was approximately four times that at Day 7 and exceeded that of the alginate microcapsule group (P<0.05). Pores formed by the AC microcapsules had a diameter of several hundred microns and were spherical compared with those formed by alginate microcapsules. Conclusions: AC microcapsule is a promising carrier to release seeding cells deep into an injectable CPC scaffold for bone engineering.
doi:10.1631/jzus.B1300132
PMCID: PMC3989157  PMID: 24711359
Injectable scaffold; Calcium phosphate cement; Osteoblast; Microencapsulation; Cell release; Chitosan
17.  Effect of Naphthalene Acetic Acid on Adventitious Root Development and Associated Physiological Changes in Stem Cutting of Hemarthria compressa 
PLoS ONE  2014;9(3):e90700.
In order to find a way to induce rooting on cuttings of Hemarthria compressa cv. Ya’an under controlled conditions, a project was carried out to study the effect of naphthalene acetic acid (NAA) on rooting in stem cuttings and related physiological changes during the rooting process of Hemarthria compressa. The cuttings were treated with five concentrations of NAA (0, 100, 200 300, 400 mg/l) at three soaking durations (10, 20, 30 minutes), and cuttings without treatment were considered as control. Samples were planted immediately into pots after treatment. IAA-oxidase (IAAO) activity, peroxidase (POD) activity and polyphenol oxidase (PPO) activity were determined after planting. Results showed that NAA had positive effect on rooting at the concentration of 200 mg/l compared to other concentrations at 30 days after planting (DAP). Among the three soaking durations, 20 minutes (min) of 200 mg/l NAA resulted in higher percentages of rooting, larger numbers of adventitious roots and heavier root dry weight per cutting. The lowest IAAO activity was obtained when soaked at 200 mg/l NAA for 20 min soaking duration. This was consistent with the best rooting ability, indicating that the lower IAAO activity, the higher POD activity and PPO activity could be used as an indicator of better rooting ability for whip grass cuttings and might serve as a good marker for rooting ability in cuttings.
doi:10.1371/journal.pone.0090700
PMCID: PMC3942460  PMID: 24595064
18.  Oleanolic acid and ursolic acid inhibit proliferation in transformed rat hepatic oval cells 
AIM: To investigate H2O2-induced promotion proliferation and malignant transformation in WB-F344 cells and anti-tumor effects of ursolic acid (UA) and oleanolic acid (OA).
METHODS: WB-F344 cells were continuously exposed to 7 x 10-7 mol/L H2O2 for 21 d. Observations of cell morphology, colony formation rates, flow cytometric analysis of cell cycle changes and aneuploidy formation indicated that H2O2 was able to induce malignant transformation of WB-F344 cells. We treated malignantly transformed WB-F344 cells with 4 μmol/L OA or 8 μmol/L UA for 72 h and analyzed the cell cycle distribution by flow cytometry.
RESULTS: MTT assay showed that 7 x 10-7 mol/L H2O2 decreased G1 phase subpopulation from 73.8% to 49.6% compared with the control group, and increased S phase subpopulation from 14.5% to 31.8% (P < 0.05 vs control group). Cell morphology showed that nucleus to cytoplasm ratio increased, many mitotic cells, prokaryotes and even tumor giant cells were shown in H2O2-induced WB-F344 cells. Fluorescence activated cell sorting analysis showed that WB-F344 cell aneuploidy increased to 12% following H2O2 treatment. Flow cytometric analysis of the transformed WB-F344 cells following treatment with OA (4 μmol/L) and UA (8 μmol/L) showed that OA increased G1 subpopulation to 68.6%, compared to 49.7% in unexposed cells. UA increased G1 subpopulation to 67.4% compared to 49.7% in unexposed cells (P < 0.05 vs H2O2 model group).
CONCLUSION: H2O2 causes the malignant transformation of WB-F344 cells. OA and UA exert anti-tumor effects by inhibiting the proliferation in malignantly transformed WB-F344 cells.
doi:10.3748/wjg.v20.i5.1348
PMCID: PMC3921518  PMID: 24574810
Oxidative stress; Hepatocarcinogenesis; Malignant transformation; Oleanolic acid; Ursolic acid
19.  Endoplasmic Reticulum Stress-Unfolding Protein Response-Apoptosis Cascade Causes Chondrodysplasia in a col2a1 p.Gly1170Ser Mutated Mouse Model 
PLoS ONE  2014;9(1):e86894.
The collagen type II alpha 1 (COL2A1) mutation causes severe skeletal malformations, but the pathogenic mechanisms of how this occurs are unclear. To understand how this may happen, a col2a1 p.Gly1170Ser mutated mouse model was constructed and in homozygotes, the chondrodysplasia phenotype was observed. Misfolded procollagen was largely synthesized and retained in dilated endoplasmic reticulum and the endoplasmic reticulum stress (ERS)-unfolded protein response (UPR)-apoptosis cascade was activated. Apoptosis occurred prior to hypertrophy, prevented the formation of a hypertrophic zone, disrupted normal chondrogenic signaling pathways, and eventually caused chondrodysplasia. Heterozygotes had normal phenotypes and endoplasmic reticulum stress intensity was limited with no abnormal apoptosis detected. Our results suggest that earlier chondrocyte death was related to the ERS-UPR-apoptosis cascade and that this was the chief cause of chondrodysplaia. The col2a1 p.Gly1170Ser mutated mouse model offered a novel connection between misfolded collagen and skeletal malformation. Further investigation of this mouse mutant model can help us understand mechanisms of type II collagenopathies.
doi:10.1371/journal.pone.0086894
PMCID: PMC3903611  PMID: 24475193
20.  Premature Attraction of Pollinators to Inaccessible Figs of Ficus altissima: A Search for Ecological and Evolutionary Consequences 
PLoS ONE  2014;9(1):e86735.
Adult life spans of only one or two days characterise life cycles of the fig wasps (Agaonidae) that pollinate fig trees (Ficus spp., Moraceae). Selection is expected to favour traits that maximise the value of the timing of encounters between such mutualistic partners, and fig wasps are usually only attracted to their hosts by species- and developmental-stage specific volatiles released from figs at the time when they are ready to be entered, oviposited in and pollinated. We found that Ficus altissima is exceptional, because it has persistent tight-fitting bud covers that prevent its Eupristina altissima pollinator (and a second species of ‘cheater’ agaonid) from entering its figs for several days after they start to be attracted. We examined the consequences of delayed entry for the figs and fig wasps and tested whether delayed entry has been selected to increase adult longevity. We found that older pollinators produced fewer and smaller offspring, but seed production was more efficient. Pollinator offspring ratios also varied depending on the age of figs they entered. The two agaonids from F. altissima lived slightly longer than six congeners associated with typical figs, but this was explainable by their larger body sizes. Delayed entry generates reproductive costs, especially for the pollinator. This opens an interesting perspective on the coevolution of figs and their pollinators and on the nature of mutualistic interactions in general.
doi:10.1371/journal.pone.0086735
PMCID: PMC3899289  PMID: 24466217
21.  Role of the nucleus tractus solitarii in the protection of pre-moxibustion on gastric mucosal lesions 
Neural Regeneration Research  2014;9(2):198-204.
Previous studies have shown that somatic sensation by acupuncture and visceral nociceptive stimulation can converge in the nucleus tractus solitarii where neurons integrate signals impacting on the function of organs. To explore the role of the nucleus tractus solitarii in the protective mechanism of pre-moxibustion on gastric mucosa, nucleus tractus solitarii were damaged in rats and pre-moxibustion treatment at the Zusanli (ST36) point followed. The gastric mucosa was then damaged by the anhydrous ethanol lavage method. Morphological observations, enzyme linked immunosorbent assays, and western immunoblot analyses showed that gastric mucosa surface lesion and the infiltration of inflammatory cells were significantly ameliorated after pre-moxibustion treatment. Furthermore, the gastric mucosal damage index and somatostatin level were reduced, and epidermal growth factor content in the gastric mucosa and heat-shock protein-70 expression were increased. These results were reversed by damage to the nucleus tractus solitarii. These findings suggest that moxibustion pretreatment at the Zusanli point is protective against acute gastric mucosa injury, and nucleus tractus solitarii damage inhibits these responses. Therefore, the nucleus tractus solitarii may be an important area for regulating the signal transduction of the protective effect of pre-moxibustion on gastric mucosa.
doi:10.4103/1673-5374.125350
PMCID: PMC4146166  PMID: 25206801
nerve regeneration; traditional Chinese medicine; moxibustion; nucleus tractus solitarii; gastric mucosal lesion; heat shock protein-70; epidermal growth factor; somatostatin; NSFC grant; neural regeneration
22.  The NAC-like gene ANTHER INDEHISCENCE FACTOR acts as a repressor that controls anther dehiscence by regulating genes in the jasmonate biosynthesis pathway in Arabidopsis  
Journal of Experimental Botany  2013;65(2):621-639.
ANTHER INDEHISCENCE FACTOR (AIF), a NAC-like gene, was identified in Arabidopsis. In AIF:GUS flowers, β-glucuronidase (GUS) activity was detected in the anther, the upper parts of the filaments, and in the pollen of stage 7–9 young flower buds; GUS activity was reduced in mature flowers. Yellow fluorescent protein (YFP)+AIF-C fusion proteins, which lacked a transmembrane domain, accumulated in the nuclei of the Arabidopsis cells, whereas the YFP+AIF fusion proteins accumulated in the membrane and were absent in the nuclei. Further detection of a cleaved AIF protein in flowers revealed that AIF needs to be processed and released from the endoplasmic reticulum in order to function. The ectopic expression of AIF-C caused a male-sterile phenotype with indehiscent anthers throughout flower development in Arabidopsis. The presence of a repressor domain in AIF and the similar phenotype of indehiscent anthers in AIF-C+SRDX plants suggest that AIF acts as a repressor. The defect in anther dehiscence was due to the down-regulation of genes that participate in jasmonic acid (JA) biosynthesis, such as DAD1/AOS/AOC3/OPR3/OPCL1. The external application of JA rescued the anther indehiscence in AIF-C and AIF-C+SRDX flowers. In AIF-C+VP16 plants, which are transgenic dominant-negative mutants in which AIF is converted to a potent activator via fusion to a VP16-AD motif, the anther dehiscence was promoted, and the expression of DAD1/AOS/AOC3/OPR3/OPCL1 was up-regulated. Furthermore, the suppression of AIF through an antisense strategy resulted in a mutant phenotype similar to that observed in the AIF-C+VP16 flowers. The present data suggest a role for AIF in controlling anther dehiscence by suppressing the expression of JA biosynthesis genes in Arabidopsis.
doi:10.1093/jxb/ert412
PMCID: PMC3904717  PMID: 24323506
Anther dehiscence; ANTHER INDEHISCENCE FACTOR; jasmonate signalling; NAC-like gene; repressor.
23.  Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy 
Pharmacogenomics  2013;14(3):315-324.
In the past decade, advances in pharmacogenetics and pharmacogenomics (PGx) have gradually unveiled the genetic basis of interindividual differences in drug responses. A large portion of these advances have been made in the field of anticancer therapy. Currently, the US FDA has updated the package inserts of approximately 30 anticancer agents to include PGx information. Given the complexity of this genetic information (e.g., tumor mutation and gene overexpression, chromosomal translocation and germline variations), as well as the variable level of scientific evidence, the FDA recommendation and potential action needed varies among drugs. In this review, we have highlighted some of these PGx discoveries for their scientific values and utility in improving therapeutic efficacy and reducing side effects. Furthermore, examples are also provided for the role of PGx in new anticancer drug development by revealing novel druggable targets.
doi:10.2217/pgs.12.213
PMCID: PMC3605891  PMID: 23394393
anticancer agents; drug label; pharmacogenetics; pharmacogenomics
24.  Effects of valproate sodium on extracellular signal-regulated kinase 1/2 phosphorylation following hippocampal neuronal epileptiform discharge in rats 
The aim of the present study was to investigate the effects of valproate sodium (VPAS) on the phosphorylation extracellular signal-regulated kinase 1/2 (ERK1/2) following hippocampal neuronal epileptiform discharge in rat neurons. The study used neurons from female and male neonate Sprague-Dawley (SD) rats (at least 24 h old), which were rapidly decapitated. Following the successful development of the epileptiform discharge cell model, the neurons were divided into two groups, the VPAS group and the control group. In the concentration-response experiment, the neurons were incubated with three different concentrations of VPAS (50, 75 and 100 mg/l) 30 min prior to the epileptiform discharge. The expression of phosphorylated ERK1/2 (p-ERK1/2) was examined using an immunofluorescence technique. In the time-response experiment, the neurons were incubated with VPAS (50 mg/l) and monitored at different time-points (30 min prior to the epileptiform discharge and 0 min, 30 min, 2 h and 6 h subsequent to epileptiform discharge), and western blotting was employed to measure the changes in p-ERK1/2 protein expression. No significant differences in the expression of p-ERK1/2 among the neurons treated with different concentrations of VPAS were identified in the concentration-response experiment. However, in the time-response experiment, the expression of p-ERK1/2 30 min prior to the epileptiform discharge was significantly lower compared with that at the other time-points. Furthermore, 50 mg/l VPAS was capable of decreasing the action potential frequency of the neuronal epileptiform discharge. ERK1/2 was excessively and persistently activated following the epileptiform discharge of the neurons. In addition, a low concentration of VPAS was effective at inhibiting the phosphorylation of ERK1/2 at an earlier period of neuronal epileptiform discharge.
doi:10.3892/etm.2013.1343
PMCID: PMC3829712  PMID: 24250721
valproate sodium; extracellular signal-regulated kinase 1/2; neuron; epileptiform discharge
25.  Larger Fig Wasps Are More Careful About Which Figs to Enter – With Good Reason 
PLoS ONE  2013;8(9):e74117.
Floral longevity reflects a balance between gains in pollinator visitation and the costs of flower maintenance. Because rewards to pollinators change over time, older flowers may be less attractive, reducing the value of extended longevity. Un-pollinated figs, the inflorescences of Ficus species, can remain receptive for long periods, but figs that are older when entered by their host-specific fig wasp pollinators produce fewer seeds and fig wasp offspring. Our field experiments with Ficushispida, a dioecious fig tree, examined how the length of time that receptive figs have remained un-pollinated influences the behaviour and reproductive success of its short-lived fig wasp pollinator, Ceratosolensolmsi marchali. The results were consistent in three different seasons, and on male and female trees, although receptivity was greatly extended during colder months. Pollinators took longer to find the ostioles of older figs, and longer to penetrate them. They also became increasingly unwilling to enter figs as they aged, and increasing numbers of the wasps became trapped in the ostiolar bracts. Larger individuals were particularly unwilling to enter older figs, resulting in older figs being pollinated by smaller wasps. On female trees, where figs produce only seeds, seed production declined rapidly with fig age. On male trees, the numbers and size of fig wasp offspring declined, and a higher proportion were male. Older male figs are harder to enter, especially for larger individuals, and offer poorer quality oviposition opportunities. This study opens an interesting new perspective on the coevolution of figs and their pollinators, especially factors influencing pollinator body size and emphasises the subtleties of interactions between mutualists.
doi:10.1371/journal.pone.0074117
PMCID: PMC3781092  PMID: 24086315

Results 1-25 (69)