PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Papp, bla")
1.  Altered Endoplasmic Reticulum Calcium Pump Expression during Breast Tumorigenesis 
Endoplasmic reticulum calcium homeostasis is involved in several essential cell functions including cell proliferation, protein synthesis, stress responses or secretion. Calcium uptake into the endoplasmic reticulum is performed by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). In order to study endoplasmic reticulum calcium homeostasis in situ in mammary tissue, in this work SERCA3 expression was investigated in normal breast and in its benign and malignant lesions in function of the cell type, degree of malignancy, and histological and molecular parameters of the tumors. Our data indicate, that although normal breast acinar epithelial cells express SERCA3 abundantly, its expression is strongly decreased already in very early non-malignant epithelial lesions such as adenosis, and remains low in lobular carcinomas. Whereas normal duct epithelium expresses significant amounts of SERCA3, its expression is decreased in several benign ductal lesions, as well as in ductal adenocarcinoma. The loss of SERCA3 expression is correlated with Elston-Ellis grade, negative hormone receptor expression or triple negative status in ductal carcinomas. The concordance between decreased SERCA3 expression and several histological, as well as molecular markers of ductal carcinogenesis indicates that endoplasmic reticulum calcium homeostasis is remodeled during tumorigenesis in the breast epithelium.
doi:10.4137/BCBCR.S7481
PMCID: PMC3153116  PMID: 21863130
breast cancer; calcium signaling; endoplasmic reticulum; SERCA; calcium pump; ion transport
2.  Modulation of B-cell endoplasmic reticulum calcium homeostasis by Epstein-Barr virus Latent Membrane Protein-1 
Molecular Cancer  2009;8:59.
Background
Calcium signaling plays an important role in B lymphocyte survival and activation, and is critically dependent on the inositol-1,4,5-tris-phosphate-induced release of calcium stored in the endoplasmic reticulum (ER). Calcium is accumulated in the ER by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes), and therefore these enzymes play an important role in ER calcium homeostasis and in the control of B of cell activation. Because Epstein-Barr virus (EBV) can immortalize B cells and contributes to lymphomagenesis, in this work the effects of the virus on SERCA-type calcium pump expression and calcium accumulation in the endoplasmic reticulum of B cells was investigated.
Results
Two Sarco-Endoplasmic Reticulum Calcium transport ATPase isoforms, the low Ca2+-affinity SERCA3, and the high Ca2+-affinity SERCA2 enzymes are simultaneously expressed in B cells. Latency type III infection of Burkitt's lymphoma cell lines with immortalization-competent virus expressing the full set of latency genes selectively decreased the expression of SERCA3 protein, whereas infection with immortalization-deficient virus that does not express the EBNA2 or LMP-1 viral genes was without effect. Down-modulation of SERCA3 expression could be observed upon LMP-1, but not EBNA2 expression in cells carrying inducible transgenes, and LMP-1 expression was associated with enhanced resting cytosolic calcium levels and increased calcium storage in the endoplasmic reticulum. Similarly to virus-induced B cell immortalisation, SERCA3 expression was also decreased in normal B cells undergoing activation and blastic transformation in germinal centers of lymph node follicles.
Conclusion
The data presented in this work indicate that EBV-induced immortalization leads to the remodelling of ER calcium homeostasis of B cells by LMP-1 that copies a previously unknown normal phenomenon taking place during antigen driven B cell activation. The functional remodelling of ER calcium homeostasis by down-regulation of SERCA3 expression constitutes a previously unknown mechanism involved in EBV-induced B cell immortalisation.
doi:10.1186/1476-4598-8-59
PMCID: PMC3098015  PMID: 19650915
3.  Isoform-Specific Up-Regulation of Plasma Membrane Ca2+ATPase Expression During Colon and Gastric Cancer Cell Differentiation 
Cell calcium  2007;42(6):590-605.
Summary
In this work we demonstrate a differentiation-induced up-regulation of the expression of plasma membrane Ca2+ATPase (PMCA) isoforms being present in various gastric/colon cancer cell types. We found PMCA1b as the major isoform in non-differentiated cancer cell lines, whereas the expression level of PMCA4b was significantly lower. Cell differentiation initiated with short chain fatty acids (SCFAs) and trichostatin A, or spontaneous differentiation of post-confluent cell cultures resulted in a marked induction of PMCA4b expression, while only moderately increased PMCA1b levels. Up-regulation of PMCA4b expression was demonstrated both at the protein and mRNA levels, and closely correlated with the induction of established differentiation markers. In contrast, the expression level of the Na+/K+-ATPase or that of the sarco/endoplasmic reticulum Ca2+ATPase 2 protein did not change significantly under these conditions. In membrane vesicles obtained from SCFA-treated gastric/colon cancer cells a marked increase in the PMCA-dependent Ca2+ transport activity was observed, indicating a general increase of PMCA function during the differentiation of these cancer cells.
Because various PMCA isoforms display distinct functional characteristics, we suggest that up-regulated PMCA expression, together with a major switch in PMCA isoform pattern may significantly contribute to the differentiation of gastric/colon cancer cells. The analysis of PMCA expression may provide a new diagnostic tool for monitoring the tumor phenotype.
doi:10.1016/j.ceca.2007.02.003
PMCID: PMC2096732  PMID: 17433436
gastric/colon carcinoma; Ca2+ homeostasis; differentiation induction; plasma membrane Ca2+ATPase; gene expression

Results 1-3 (3)