PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (95)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Novel Agent Nitidine Chloride Induces Erythroid Differentiation and Apoptosis in CML Cells through c-Myc-miRNAs Axis 
PLoS ONE  2015;10(2):e0116880.
The proto-oncogene c-Myc plays critical roles in human malignancies including chronic myeloid leukemia (CML), suggesting that the discovery of specific agents targeting c-Myc would be extremely valuable for CML treatment. Nitidine Chloride (NC), a natural bioactive alkaloid, is suggested to possess anti-tumor effects. However, the function of NC in leukemia and the underlying molecular mechanisms have not been established. In this study, we found that NC induced erythroid differentiation, accompanied by increased expression of erythroid differentiation markers, e. g. α-, ε-, γ-globin, CD235a, CD71 and α-hemoglobin stabilizing protein (AHSP) in CML cells. We also observed that NC induced apoptosis and upregulated cleaved caspase-3 and Parp-1 in K562 cells. These effects were associated with concomitant attenuation of c-Myc. Our study showed that NC treatment in CML cells enhanced phosphorylation of Thr58 residue and subsequently accelerated degradation of c-Myc. A specific group of miRNAs, which had been reported to be activated by c-Myc, mediated biological functions of c-Myc. We found that most of these miRNAs, especially miR-17 and miR-20a showed strong decrement after NC treatment or c-Myc interference. Furthermore, overexpression of c-Myc or miR-17/20a alleviated NC induced differentiation and apoptosis in K562 cells. More importantly, NC enhanced the effects of imatinib in K562 and primary CML cells. We further found that even imatinib resistant CML cell line (K562/G01) and CML primary cells exhibited high sensitivity to NC, which showed potential possibility to overcome imatinib resistance. Taken together, our results clearly suggested that NC promoted erythroid differentiation and apoptosis through c-Myc-miRNAs regulatory axis, providing potential possibility to overcome imatinib resistance.
doi:10.1371/journal.pone.0116880
PMCID: PMC4315404  PMID: 25647305
2.  Cadmium Accumulation and Metallothionein Biosynthesis in Cadmium-Treated Freshwater Mussel Anodonta woodiana 
PLoS ONE  2015;10(2):e0117037.
This study investigated the distribution of cadmium (Cd) and the protein level of metallothionein (MT) and examined the relationship of Cd accumulation and the MT concentration in different tissues of freshwater mussel Anodonta woodiana following Cd treatment. The mussels were exposed to Cd (4.21, 8.43, 16.86, 33.72 and 67.45 mg L-1) for 24, 48, 72 and 96 h, respectively. After Cd treatment, the gills, mantle, foot, visceral mass and digestive gland tissues were collected for analysis. We found that, in the controls, Cd distributed in all tissues in the concentration order of gills>mantle>foot>visceral mass>digestive gland. Upon Cd treatment, Cd concentration significantly increased in all tissues. The highest Cd accumulation was found in the digestive gland, which was 0.142 mg g-1 (P<0.05). MT levels in the gills and mantle of the mussels increased significantly (P<0.05), which were in positive correlation with Cd accumulation in the tissues (P<0.05). In conclusion, our results demonstrated a correlation between Cd accumulation and MT up-regulation in gills and mantle of the mussels after Cd treatment. It is suggested that the protein level of MT in gills and mantle of Anodonta woodiana is a good biomarker for Cd contamination.
doi:10.1371/journal.pone.0117037
PMCID: PMC4315577  PMID: 25647043
3.  Effect of hydrogen sulfide on inflammatory cytokines in acute myocardial ischemia injury in rats 
Hydrogen sulfide (H2S) is believed to be involved in numerous physiological and pathophysiological processes, and now it is recognized as the third endogenous signaling gasotransmitter, following nitric oxide and carbon monoxide; however, the effects of H2S on inflammatory factors in acute myocardial ischemia injury in rats have not been clarified. In the present study, sodium hydrosulfide (NaHS) was used as the H2S donor. Thirty-six male Sprague Dawley rats were randomly divided into five groups: Sham, ischemia, ischemia + low-dose (0.78 mg/kg) NaHS, ischemia + medium-dose (1.56 mg/kg) NaHS, ischemia + high-dose (3.12 mg/kg) NaHS and ischemia + propargylglycine (PPG) (30 mg/kg). The rats in each group were sacrificed 6 h after the surgery for sample collection. Compared with the ischemia group, the cardiac damage in the rats in the ischemia + NaHS groups was significantly reduced, particularly in the high-dose group; in the ischemia + PPG group, the myocardial injury was aggravated compared with that in the ischemia group. Compared with the ischemia group, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in the serum of rats in the ischemia + medium- and high-dose NaHS groups were significantly reduced, and the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) protein in the myocardial tissues of rats was significantly reduced. In the ischemia + PPG group, the TNF-α, IL-1β and IL-6 levels in the serum were significantly increased, the expression of ICAM-1 mRNA was increased, although without a significant difference, and the expression of NF-κB was increased. The findings of the present study provide novel evidence for the dual effects of H2S on acute myocardial ischemia injury via the modulation of inflammatory factors.
doi:10.3892/etm.2015.2218
PMCID: PMC4316979  PMID: 25667680
hydrogen sulfide; acute myocardial ischemia; rat; inflammatory factor
4.  A Truncated NLR Protein, TIR-NBS2, Is Required for Activated Defense Responses in the exo70B1 Mutant 
PLoS Genetics  2015;11(1):e1004945.
During exocytosis, the evolutionarily conserved exocyst complex tethers Golgi-derived vesicles to the target plasma membrane, a critical function for secretory pathways. Here we show that exo70B1 loss-of-function mutants express activated defense responses upon infection and express enhanced resistance to fungal, oomycete and bacterial pathogens. In a screen for mutants that suppress exo70B1 resistance, we identified nine alleles of TIR-NBS2 (TN2), suggesting that loss-of-function of EXO70B1 leads to activation of this nucleotide binding domain and leucine-rich repeat-containing (NLR)-like disease resistance protein. This NLR-like protein is atypical because it lacks the LRR domain common in typical NLR receptors. In addition, we show that TN2 interacts with EXO70B1 in yeast and in planta. Our study thus provides a link between the exocyst complex and the function of a ‘TIR-NBS only’ immune receptor like protein. Our data are consistent with a speculative model wherein pathogen effectors could evolve to target EXO70B1 to manipulate plant secretion machinery. TN2 could monitor EXO70B1 integrity as part of an immune receptor complex.
Author Summary
Secretory pathways play an important role in the plant immune response by delivering antimicrobial compounds and metabolites to the site of infection. The evolutionarily conserved exocyst complex is involved in exocytosis, the final step in the secretory pathway. We showed that loss of the function of EXO70B1, a subunit of exocyst complex, results in activated defense responses, and enhanced resistance to a range of pathogens. We found that EXO70B1 associates with the SNARE complex protein SNAP33, which is involved in focal secretion of defense-related proteins. Enhanced disease resistance and cell death in the exo70B1 mutant are dependent on TIR-NBS2 (TN2), an atypical intracellular immune receptor-like protein that lacks leucine-rich repeats. TN2 physically associates with EXO70B1, and TN2 transcripts accumulate at much higher levels in the exo70B1 mutant. These data are consistent with a model where activation of a receptor pathway containing TIR-NBS2 is responsible for activated defense responses and cell death in exo70B1. Our data further suggest that this, and possibly other, exocyst components could be targets of effectors that are guarded by immune receptors.
doi:10.1371/journal.pgen.1004945
PMCID: PMC4305288  PMID: 25617755
5.  Global analysis of the rat and human platelet proteome – the molecular blueprint for illustrating multi-functional platelets and cross-species function evolution 
Proteomics  2010;10(13):2444-2457.
Emerging evidences indicate that blood platelets function in multiple biological processes including immune response, bone metastasis and liver regeneration in addition to their known roles in hemostasis and thrombosis. Global elucidation of platelet proteome will provide the molecular base of these platelet functions. Here, we set up a high throughput platform for maximum exploration of the rat/human platelet proteome using integrated proteomics technologies, and then applied to identify the largest number of the proteins expressed in both rat and human platelets. After stringent statistical filtration, a total of 837 unique proteins matched with at least two unique peptides were precisely identified, making it the first comprehensive protein database so far for rat platelets. Meanwhile, quantitative analyses of the thrombin-stimulated platelets offered great insights into the biological functions of platelet proteins and therefore confirmed our global profiling data. A comparative proteomic analysis between rat and human platelets was also conducted, which revealed not only a significant similarity, but also an across-species evolutionary link that the orthologous proteins representing ‘core proteome’, and the ‘evolutionary proteome’ is actually a relatively static proteome.
doi:10.1002/pmic.200900271
PMCID: PMC4302335  PMID: 20443191
Blood platelets; multidimensional separation; mass spectrometry; global profiling; cross-species comparison
6.  Preventive effect of pentoxifylline on contrast-induced acute kidney injury in hypercholesterolemic rats 
Oxidative stress is an important mechanism of contrast-induced acute kidney injury (CIAKI). The optimal strategy to prevent CIAKI remains unclear. The aim of the present study was to assess the effect of pentoxifylline, a nonspecific phosphodiesterase inhibitor, on the prevention of CIAKI. A total of 32 healthy male Sprague-Dawley rats were randomly divided into normal dietary group (NN; n=8) and a high cholesterol-supplemented dietary group (HN; 4% cholesterol and 1% cholic acid; n=24). At the end of eight weeks, the rats in the high cholesterol diet group were randomly divided into three subgroups (n=8 in each group). CIAKI was induced in two of the subgroups via intravenous injection of the radiocontrast media iohexol (10 ml/kg). Pentoxifylline (50 mg/kg) was administered to one of the iohexol-treated groups via intraperitoneal injection 12 h prior to and following contrast media (CM) injection. Kidney function parameters and oxidative stress markers were then measured. The renal pathological changes were evaluated using hematoxylin and eosin staining and scored semi-quantitatively. In iohexol-injected rats, serum creatinine (Scr), renal pathological scores, renal malondialdehyde (MDA) content, renal NADPH oxidase activity, fractional excretion of sodium (FENa%) and fractional excretion of potassium (FEK%) were significantly increased (P<0.01). The Scr, histologic scores, renal MDA content, NADPH oxidase activity, FENa% and FEK% in the rats treated with pentoxifylline prior to iohexol were observed to be reduced compared with those in rats treated with iohexol alone (P<0.01). This suggests that pentoxifylline significantly attenuates renal injuries, including tubular necrosis and proteinaceous casts induced by CM. It may be concluded that pentoxifylline protected the renal tissue from the nephrotoxicity induced by low-osmolar CM via an antioxidant effect.
doi:10.3892/etm.2014.2132
PMCID: PMC4280922  PMID: 25574202
pentoxifylline; low-osmolar contrast media; acute kidney injury; oxidative stress; nicotinamide adenine dinucleotide phosphate oxidase
9.  Wnt signaling is involved in 6-benzylthioinosine-induced AML cell differentiation 
BMC Cancer  2014;14(1):886.
Background
We previously demonstrated that 6-benzylthioinosine (6-BT) could induce the differentiation of a subset of acute myeloid leukemia (AML) cell lines and primary AML cells regardless of their cytogenetics. In this study we investigated whether Wnt signaling pathways played roles in 6-BT-induced differentiation of AML cells.
Methods
We induced differentiation of HL-60 leukemic cells and primary AML cells in vitro using 6-BT. Real-time PCR (qPCR), western blot, and luciferase assays were used to examine the molecules’ expression and biological activity in canonical and noncanonical Wnt signaling pathways. AML cell differentiation was measured by the Nitroblue tetrozolium (NBT) reduction assay.
Results
6-BT regulated the expression of both canonical and non-canonical Wnt signaling molecules in HL-60 cells. Both 6-BT and all-trans-retinoic-acid (ATRA) reduced canonical Wnt signaling and activated noncanonical Wnt/Ca2+ signaling in HL-60 cells. Pre-treatment of HL-60 cells with an inhibitor of glycogen synthase kinase-3β (GSK-3β), which activated canonical Wnt signaling, partly abolished the differentiation of HL-60 cells induced by 6-BT. Pre-treatment of HL-60 cells with an inhibitor of protein kinase C (PKC), resulting in inactivation of non-canonical Wnt/Ca2+ signaling, abolished 6-BT-induced differentiation of HL-60 cells. Several molecules in the non-canonical Wnt/Ca2+ pathway were detected in bone marrow samples from AML patients, and the expression of FZD4, FZD5, Wnt5a and RHOU were significantly reduced in newly diagnosed AML samples compared with normal controls.
Conclusions
Both canonical and non-canonical Wnt signaling were involved in 6-BT-induced differentiation of HL-60 cells, and played opposite roles in this process. Wnt signaling could be involved in the pathogenesis of AML not only by regulating self-renewal of hematopoietic stem cells, but also by playing a role in the differentiation of AML cells.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2407-14-886) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2407-14-886
PMCID: PMC4289047  PMID: 25428027
Wnt; AML; Differentiation; 6-BT
10.  Simultaneous determination by UPLC-MS/MS of seven bioactive compounds in rat plasma after oral administration of Ginkgo biloba tablets: application to a pharmacokinetic study*  
A rapid, reliable, and sensitive method was developed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with an electrospray ionization (ESI) source for determination of seven bioactive compounds in rat plasma after oral administration of Ginkgo biloba tablets (GBTs). The method simultaneously detects bilobalide (BB), ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC), quercetin (QCT), kaempferol (KMF), and isorhamnetin (ISR) for pharmacokinetic study. The analytes and internal standard (IS) were extracted from rat plasma by acetidin. An MS/MS detection was conducted using multiple reaction monitoring (MRM) and operating in the negative ionization mode. The calibration curve ranges were 5–500, 5–500, 2.5–250, 1–100, 1–100, 1–100, and 1–100 ng/ml for BB, GA, GB, GC, QCT, KMF, and ISR, respectively. The mean recovery of the analytes ranged from 68.11% to 84.42%. The intra- and inter-day precisions were in the range of 2.33%–9.86% and the accuracies were between 87.67% and 108.37%. The method was used successfully in a pharmacokinetic study of GBTs. The pharmacokinetic parameters of seven compounds were analyzed using a non-compartment model. Plasma concentrations of the seven compounds were determined up to 48 h after administration, and their pharmacokinetic parameters were in agreement with previous studies.
doi:10.1631/jzus.B1400035
PMCID: PMC4228506  PMID: 25367786
Ginkgo biloba tablet; Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS); Pharmacokinetics
11.  Essential oil from Zanthoxylum bungeanum Maxim. and its main components used as transdermal penetration enhancers: a comparative study*  
Our previous studies had confirmed that the essential oil from Zanthoxylum bungeanum Maxim. (Z. bungeanum oil) could effectively enhance the percutaneous permeation of drug molecules as a natural transdermal penetration enhancer. The aim of the present study is to investigate and compare the skin penetration enhancement effect of Z. bungeanum oil and its main components on traditional Chinese medicine (TCM) active components. Toxicities of Z. bungeanum oil and three selected terpene compounds (terpinen-4-ol, 1,8-cineole, and limonene) in epidermal keratinocytes (HaCaT) and dermal fibroblast (CCC-ESF-1) cell lines were measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Five model drugs in TCM external preparations, namely osthole (OT), tetramethylpyrazine (TMP), ferulic acid (FA), puerarin (PR), and geniposide (GP), which were selected based on their lipophilicity denoted by logK o/w, were tested using in vitro permeation studies in which vertical Franz diffusion cells and rat abdominal skin were employed. The secondary structure changes of skin stratum corneum (SC) and drug thermodynamic activities were investigated to understand their mechanisms of action using Fourier transform infrared (FTIR) spectroscopy and saturation solubility studies, respectively. It was found that Z. bungeanum oil showed lower toxicities in both HaCaT cells and CCC-ESF-1 cells compared with three terpene compounds used alone. The enhancement permeation capacities by all tested agents were in the following increasing order: terpinen-4-ol≈1,8-cineole
doi:10.1631/jzus.B1400158
PMCID: PMC4228507  PMID: 25367787
Zanthoxylum bungeanum Maxim.; Essential oil; Limonene; Fourier transform infrared (FTIR) spectroscopy; Penetration enhancer; HaCaT
N,N'-dinitrosopiperazine (DNP) with organ specificity for nasopharyngeal epithelium, is involved in nasopharyngeal carcinoma (NPC) metastasis, though its mechanism is unclear. To reveal the pathogenesis of DNP-induced metastasis, immunoprecipitation was used to identify DNP-mediated phosphoproteins. DNP-mediated NPC cell line (6-10B) motility and invasion was confirmed. Twenty-six phosphoproteins were increased at least 1.5-fold following DNP exposure. Changes in the expression levels of selected phosphoproteins were verified by Western-blotting analysis. DNP treatment altered the phosphorylation of ezrin (threonine 567), vimentin (serine 55), stathmin (serine 25) and STAT3 (serine 727). Furthermore, it was shown that DNP-dependent metastasis is mediated in part through ezrin at threonine 567, as DNP-mediated metastasis was decreased when threonine 567 of ezrin was mutated. Strikingly, NPC metastatic tumors exhibited a higher expression of phosphorylated-ezrin at threonine 567 than the primary tumors. These findings provide novel insight into DNP-induced NPC metastasis and may contribute to a better understanding of the metastatic mechanisms of NPC tumors.
doi:10.3390/ijms151120054
PMCID: PMC4264155  PMID: 25375189
dinitrosopiperazine; nasopharyngeal carcinoma; metastasis; protein phosphorylation; proteomics
A 58-year-old female exhibited the onset of symmetrical sensory abnormalities of the face and extremities. The neurological examination revealed normal muscle strength with abated or absent tendon reflexes. The patient experienced symmetrical glove- and stocking-type pinprick sensations in the distal extremities and a loss of temperature sensation, but had normal proprioception and vibration senses and joint topesthesia. The lumbar puncture showed protein cell separation at the fifth week after the onset of symptoms. At the same time-point, the electrophysiological examination showed demyelination changes involving the trigeminal nerve and the somatic motor nerve. Needle electromyography revealed normal results. The clinical symptoms ceased progression at the fourth week after symptom onset, and began to improve from the sixth. This case was considered to be sensory Guillain-Barré syndrome, which was characterized by its cranial nerve involvement.
doi:10.3892/etm.2014.1995
PMCID: PMC4217785  PMID: 25371720
sensory Guillain-Barré syndrome; electrophysiology; cranial nerve
Retroperitoneal leiomyosarcomas (LMSs) are rare gynecological malignancies that display poor prognosis and high mortality. Cell cycle-related and expression-elevated protein in tumor (CREPT) is an oncogene that is involved in the regulation of many cell cycle-related proteins. However, its distribution and clinical significance in retroperitoneal LMS remains poorly understood. This study assessed the histological classifications of postoperative tumor samples from 71 cases of retroperitoneal LMS that were collected at The General Hospital of the People’s Liberation Army from January 1998 to December 2012. We found that more than half of the patients displayed positive expressions of CREPT, Ki-67 and PCNA via immunohistochemical analysis. The expression of CREPT correlated with histological grade (P = 0.044), and the PCNA expression level correlated with the differentiation of tumor cells and histological grade (P < 0.001 and P = 0.009, respectively). Multivariate analysis showed that survival was associated with histological grade and the expression level of CREPT (P = 0.011 and P = 0.012, respectively). Kaplan-Meier analysis showed that the patients lacking CREPT expression exhibited significantly longer overall postoperative survival (median, 60.0 months) than the patients displaying CREPT expression (median, 33.0 months), and CREPT expression correlated with distant recurrence within 5 years after surgery (P = 0.004). Western blot analyses showed that CREPT was more strongly expressed in the retroperitoneal LMS tumor tissue than in paired control tissue. Based on the above data, we concluded that CREPT displays unique immunostaining for retroperitoneal LMS tissue and can be used to supplement other currently available retroperitoneal LMS markers.
PMCID: PMC4230136  PMID: 25400738
CREPT; retroperitoneal neoplasms; leiomyosarcoma; prognosis
Genetics and Molecular Biology  2014;37(3):500-507.
Reference genes are commonly used for normalization of target gene expression during RT-qPCR analysis. However, no housekeeping genes or reference genes have been identified to be stable across different tissue types or under different experimental conditions. To identify the most suitable reference genes for RT-qPCR analysis of target gene expression in the hepatopancreas of crucian carp (Carassius auratus) under various conditions (sex, age, water temperature, and drug treatments), seven reference genes, including beta actin (ACTB), beta-2 microglobulin (B2M), embryonic elongation factor-1 alpha (EEF1A), glyceraldehyde phosphate dehydrogenase (GAPDH), alpha tubulin (TUBA), ribosomal protein l8 (RPL8) and glucose-6-phosphate dehydrogenase (G6PDH), were evaluated in this study. The stability and ranking of gene expression were analyzed using three different statistical programs: GeNorm, Normfinder and Bestkeeper. The expression errors associated with selection of the genes were assessed by the relative quantity of CYP4T. The results indicated that all the seven genes exhibited variability under the experimental conditions of this research, and the combination of ACTB/TUBA/EEF1A or of ACTB/EEF1A was the best candidate that raised the accuracy of quantitative analysis of gene expression. The findings highlighted the importance of validation of housekeeping genes for research on gene expression under different conditions of experiment and species.
PMCID: PMC4171773  PMID: 25249772
gene expression; quantitative RT-PCR; housekeeping genes; CYP4T; crucian carp
Journal of the American Chemical Society  2013;135(33):12434-12438.
The tetracyclic carbon skeleton of hainanolidol and harringtonolide was efficiently constructed by an intramolecular oxidopyrylium-based [5+2] cycloaddition. An anionic ring opening strategy was developed for the cleavage of the ether bridge in 8-oxabicyclo[3.2.1]octenes derived from the [5+2] cycloaddition. Conversion of cycloheptadiene to tropone was realized by a sequential [4+2] cycloaddition, Kornblum-DeLaMare rearrangement, and double elimination. The biomimetic synthesis of harringtonolide from hainanolidol was also confirmed.
doi:10.1021/ja406255j
PMCID: PMC3798225  PMID: 23930656
Trigeminal neuralgia (TN), a neuropathic disorder of one or both of the trigeminal nerves, occurs most often in people over age 50. Extreme, sporadic, sudden burning or shock-like face pain in common activities greatly lowers quality of life. The precise cause of primary TN remains unknown, but it may be caused by vascular pressing on the trigeminal nerve in its root entry zone (REZ), demyelinization of trigeminal sensory fibers, or jawbone cavity. Accordingly, many treatments carry risks of adverse effects, recurrence, and complications. TN and osteoporosis have similar high-risk populations and a common influential factor – emotional stress – is also closed related to primary TN for calcitonin gene-related peptide and calcitonin. Jawbone cavity, which is a possible pathogenesis of TN, may be another form of jawbone osteoporosis. Therefore, we hypothesized that osteoporosis in jaws could be a correlative factor of primary TN. If this hypothesis is verified, it may suggest specific new ideas for the early preventive treatment of primary TN.
doi:10.12659/MSM.890935
PMCID: PMC4148358  PMID: 25141822
Calcitonin; Calcitonin Gene-Related Peptide; Osteoporosis; Stress, Physiological; Trigeminal Neuralgia
Nature genetics  2010;42(1):6-10.
Next-generation sequencing technologies generate vast catalogs of short RNA sequences from which to mine microRNAs. However, such data must be vetted to appropriately categorize microRNA precursors and interpret their evolution. A recent study annotated hundreds of microRNAs in three Drosophila species on the basis of singleton reads of heterogeneous length1. Our multi-million read datasets indicated that most of these were not substrates of RNAse III cleavage, and comprised many mRNA degradation fragments. We instead identified a distinct and smaller set of novel microRNAs supported by confident cloning signatures, including a high proportion of evolutionarily nascent mirtrons. Our data support a much lower rate in the emergence of lineage-specific microRNAs than previously inferred1, with a net flux of ~1 microRNA/million years of Drosophilid evolution.
doi:10.1038/ng0110-6
PMCID: PMC4136759  PMID: 20037610
Objective. Total antioxidant capacity in serum is determined by the total mass of antioxidant substances and the antioxidant capacity per unit mass (average activity). The purpose of this study was to develop a method to determine the mass of antioxidant substances and average activity in human serum. Methods. Specimens of serum were collected from 100 subjects each from two different age groups: over 75 years old and 20–40 years old. The test serum was diluted into a series of concentrations, following which standard oxidation agents (KMnO4 for potassium permanganate method and I2 for iodimetry) were added to each concentration of serum, and the absorbance of the mixture (optical density, OD) was measured. The OD value and logarithm of dilution factor (lgT) at the end of the titration were obtained, from which the lgT could be considered as mass of antioxidant substances (M). Total antioxidant capacity (Ta) was calculated with the equation Ta = 100/(OD1 + 2 ∗ OD2 + 2 ∗ OD3 + 2 ∗ OD4 + OD5), and average activity (A) was calculated as A = Ta/M. Results. The potassium permanganate method generated similar results to the iodimetric method. Compared with the younger group, total antioxidant capacity in the over-75-year age group was found to be significantly reduced, along with a decrease in the mass of antioxidant substances and average activity levels in human serum. Conclusions. The approach described in this paper is suitable for determining the average activity and mass of antioxidant substances in human serum.
doi:10.1155/2014/928595
PMCID: PMC4129143  PMID: 25140122
The Scientific World Journal  2014;2014:457937.
The effects of two levels of irrigation water (100%, 60%) and buried underground pipe depths (0.8 m, 0.6 m) under rain shelters' conditions on yield and some quality parameters of tomato were investigated. A fully randomized factorial experiment was conducted between April and August in 2011 and 2012 at Hohai University. It was found that drainage treatments enhanced biomass production, whereas soil desiccation led to biomass reduction. At 60 cm buried underground pipe depths, the drought treatments increased the mean root weight and root-shoot ratio by 14% and 39%, respectively. The main effects of drainage treatments on the fruit quality were increases in total soluble solids (TSS), soluble sugar (SS), and vitamin C (VC) compared to the control. In addition, drainage treatments increased the average yield by 13% and 9%, respectively, in both years. The drought treatments did not significantly alter fruit yield, although mean single fruit weight was slightly reduced. Instead, these treatments tend to have great potential to improve fruit quality (TSS, SS, and VC) to variable extents. In both years, the drought treatment at 60 cm buried underground pipe depths proved to possess the highest comprehensive quality index based on Principal Component Analysis.
doi:10.1155/2014/457937
PMCID: PMC4098618  PMID: 25054180
PLoS ONE  2014;9(6):e98853.
Acute myeloid leukemia (AML), caused by abnormal proliferation and accumulation of hematopoietic progenitor cells, is one of the most common malignancies in adults. We reported here DYRK1A expression level was reduced in the bone marrow of adult AML patients, comparing to normal controls. Overexpression of DYRK1A inhibited the proliferation of AML cell lines by increasing the proportion of cells undergoing G0/G1 phase. We reasoned that the proliferative inhibition was due to downregulation of c-Myc by DYRK1A, through mediating its degradation. Moreover, overexpression of c-Myc markedly reversed AML cell growth inhibition induced by DYRK1A. DYRK1A also had significantly lower expression in relapsed/refractory AML patients, comparing to newly-diagnosed AML patients, which indicated the role of DYRK1A in chemoresistance of AML. Our study provided functional evidences for DYRK1A as a potential tumor suppressor in AML.
doi:10.1371/journal.pone.0098853
PMCID: PMC4047119  PMID: 24901999
Clinics  2014;69(6):398-404.
OBJECTIVE:
The goal of the present study was to compare the prognoses of patients with non-ST-elevation acute coronary syndromes who were treated with invasive or conservative treatment strategies.
METHODS:
We performed a meta-analysis of studies of patients with non-ST-elevation acute coronary syndromes to assess the benefits of an invasive strategy vs. a conservative strategy for short- and long-term survival. We searched PubMed for studies published from 1990 to November 2012 that investigated the effects of an invasive vs. conservative strategy in patients with non-ST-elevation acute coronary syndromes. The following search terms were used: “non-ST-elevation myocardial infarction”, “unstable angina”, “acute coronary syndromes”, “invasive strategy”, and “conservative strategy”. The primary endpoints were all-cause mortality at 30 days and 1 year.
RESULTS:
Seven published studies were included in the present meta-analysis. The pooled analyses show that an invasive strategy decreased the risk of death (risk ratio [0.839] [95% confidence interval {0.648-1.086}; I2, 86.46%] compared to a conservative strategy over a 30-day-period. Furthermore, invasive treatment also decreased patient mortality (risk ratio [0.276] [95% confidence interval {0.259-0.294}; I2, 94.58%]) compared to a conservative strategy for one year.
CONCLUSION:
In non-ST-elevation acute coronary syndromes, an invasive strategy is comparable to a conservative strategy for decreasing short- and long-term mortality rates.
doi:10.6061/clinics/2014(06)06
PMCID: PMC4050985  PMID: 24964304
Non-ST-elevation Acute Coronary Syndrome; Invasive Strategy; Conservative Strategy; Meta-analysis; Mortality
Molecular Cancer  2014;13:111.
Background
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein that acts as a prognostic marker for several human malignancies. In this study, we investigated the clinical significance of CIP2A and its function in nasopharyngeal carcinoma (NPC).
Methods
Quantitative RT-PCR, western blot, and immunohistochemistry analyses were used to quantify CIP2A expression in NPC cell lines and clinical samples. Kaplan-Meier curves were used to estimate the association between CIP2A expression and patient survival. The functional role of CIP2A in NPC cell lines was evaluated by small interfering RNA-mediated depletion of the protein followed by analyses of cell proliferation and xenograft growth.
Results
CIP2A levels were upregulated in NPC cell lines and clinical samples at both the mRNA and protein levels (P < 0.01). Patients with high CIP2A expression had poorer overall survival (HR, 1.98; 95% CI, 1.16-3.34; P = 0.01) and poorer disease-free survival (HR, 1.68; 95% CI, 1.07-2.62; P = 0.02) rates than patients with low CIP2A expression. In addition, CIP2A expression status was an independent prognostic indicator for NPC patients. The depletion of CIP2A expression inhibited c-Myc protein expression in NPC cell lines, suppressed cell viability, colony formation, and anchorage-independent growth in vitro, and inhibited xenograft tumor growth in vivo.
Conclusions
Our data demonstrate that high CIP2A expression in patients was associated with poor survival in NPC, and depletion of CIP2A expression inhibited NPC cell proliferation and tumor growth. Thus, these results warrant further investigation of CIP2A as a novel therapeutic target for the treatment of NPC.
doi:10.1186/1476-4598-13-111
PMCID: PMC4046003  PMID: 24884612
Nasopharyngeal carcinoma; CIP2A; Proliferation; Cell growth; Survival
PLoS ONE  2014;9(5):e93364.
The formation and attachment of new cementum is crucial for periodontium regeneration. Tissue engineering is currently explored to achieve complete, reliable and reproducible regeneration of the periodontium. The capacity of multipotency and self-renewal makes adipose tissue-deprived stem cells (ADSCs) an excellent cell source for tissue regeneration and repair. After rat ADSCs were cultured in dental follicle cell-conditioned medium (DFC-CM) supplemented with DKK-1, an inhibitor of the Wnt pathway, followed by 7 days of induction, they exhibited several phenotypic characteristics of cementoblast lineages, as indicated by upregulated expression levels of CAP, ALP, BSP and OPN mRNA, and accelerated expression of BSP and CAP proteins. The Wnt/β-catenin signaling pathway controls differentiation of stem cells by regulating the expression of target genes. Cementoblasts share phenotypical features with osteoblasts. In this study, we demonstrated that culturing ADSCs in DFC-CM supplemented with DKK-1 results in inhibition of β-catenin nuclear translocation and down-regulates TCF-4 and LEF-1 mRNA expression levels. We also found that DKK-1 could promote cementogenic differentiation of ADSCs, which was evident by the up-regulation of CAP, ALP, BSP and OPN gene expressions. On the other hand, culturing ADSCs in DFC-CM supplemented with 100 ng/mL Wnt3a, which activates the Wnt/β-catenin pathway, abrogated this effect. Taken together, our study indicates that the Wnt/β-catenin signaling pathway plays an important role in regulating cementogenic differentiation of ADSCs cultured in DFC-CM. These results raise the possibility of using ADSCs for periodontal regeneration by modifying the Wnt/β-catenin pathway.
doi:10.1371/journal.pone.0093364
PMCID: PMC4012947  PMID: 24806734
PLoS ONE  2014;9(4):e95955.
The trace metal selenium is in demand for health supplements to human and animal nutrition. We studied the reduction of selenite (SeO3−2) to red elemental selenium by Rhodopseudomonas palustris strain N. This strain was cultured in a medium containing SeO3−2 and the particles obtained from cultures were analyzed using transmission electron microscopy (TEM), energy dispersive microanalysis (EDX) and X ray diffraction analysis (XRD). Our results showed the strain N could reduce SeO3−2 to red elemental selenium. The diameters of particles were 80–200 nm. The bacteria exhibited significant tolerance to SeO3−2 up to 8.0 m mol/L concentration with an EC50 value of 2.4 m mol/L. After 9 d of cultivation, the presence of SeO32− up to 1.0 m mol/L resulted in 99.9% reduction of selenite, whereas 82.0% (p<0.05), 31.7% (p<0.05) and 2.4% (p<0.05) reduction of SeO3−2 was observed at 2.0, 4.0 and 8.0 m mol/L SeO32− concentrations, respectively. This study indicated that red elemental selenium was synthesized by green technology using Rhodopseudomonas palustris strain N. This strain also indicated a high tolerance to SeO3−2. The finding of this work will contribute to the application of selenium to human health.
doi:10.1371/journal.pone.0095955
PMCID: PMC3997485  PMID: 24759917

Results 1-25 (95)