PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-20 (20)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AβPPL/S Transgenic Mice 
The p75 neurotrophin receptor (p75NTR ) is involved in degenerative mechanisms related to Alzheimer’s disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds.
doi:10.3233/JAD-140036
PMCID: PMC4278429  PMID: 24898660
Alzheimer’s disease; LM11A-31; LM11A-24; p75 neurotrophin receptor
2.  Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome 
Cell reports  2014;7(4):1077-1092.
Summary
A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.
doi:10.1016/j.celrep.2014.03.036
PMCID: PMC4251471  PMID: 24794428
3.  Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers I: Abeta 42 Oligomer Binding to Specific Neuronal Receptors Is Displaced by Drug Candidates That Improve Cognitive Deficits 
PLoS ONE  2014;9(11):e111898.
Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1–42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors - i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models and sustain improvement long-term, representing a novel mechanism of action for disease-modifying Alzheimer's therapeutics.
doi:10.1371/journal.pone.0111898
PMCID: PMC4229098  PMID: 25390368
4.  A Small Molecule TrkB Ligand Reduces Motor Impairment and Neuropathology in R6/2 and BACHD Mouse Models of Huntington's Disease 
The Journal of Neuroscience  2013;33(48):18712-18727.
Loss of neurotrophic support in the striatum caused by reduced brain-derived neurotrophic factor (BDNF) levels plays a critical role in Huntington's disease (HD) pathogenesis. BDNF acts via TrkB and p75 neurotrophin receptors (NTR), and restoring its signaling is a prime target for HD therapeutics. Here we sought to determine whether a small molecule ligand, LM22A-4, specific for TrkB and without effects on p75NTR, could alleviate HD-related pathology in R6/2 and BACHD mouse models of HD. LM22A-4 was administered to R6/2 mice once daily (5–6 d/week) from 4 to 11 weeks of age via intraperitoneal and intranasal routes simultaneously to maximize brain levels. The ligand reached levels in the R6/2 forebrain greater than the maximal neuroprotective dose in vitro and corrected deficits in activation of striatal TrkB and its key signaling intermediates AKT, PLCγ, and CREB. Ligand-induced TrkB activation was associated with a reduction in HD pathologies in the striatum including decreased DARPP-32 levels, neurite degeneration of parvalbumin-containing interneurons, inflammation, and intranuclear huntingtin aggregates. Aggregates were also reduced in the cortex. Notably, LM22A-4 prevented deficits in dendritic spine density of medium spiny neurons. Moreover, R6/2 mice given LM22A-4 demonstrated improved downward climbing and grip strength compared with those given vehicle, though these groups had comparable rotarod performances and survival times. In BACHD mice, long-term LM22A-4 treatment (6 months) produced similar ameliorative effects. These results support the hypothesis that targeted activation of TrkB inhibits HD-related degenerative mechanisms, including spine loss, and may provide a disease mechanism-directed therapy for HD and other neurodegenerative conditions.
doi:10.1523/JNEUROSCI.1310-13.2013
PMCID: PMC3841443  PMID: 24285878
5.  β1-adrenergic receptor activation enhances memory in Alzheimer's disease model 
Objective
Deficits in social recognition and learning of social cues are major symptoms of neurodegenerative disorders such as Alzheimer's disease (AD). Here, we studied the role of β1-noradrenergic signaling in cognitive function to determine whether it could be used as a potential therapeutic target for AD.
Methods
Using pharmacological, biochemical, and behavioral tools, we assessed social recognition and the β1-adrenergic receptor (ADR) and its downstream protein kinase A (PKA)/phospho-cAMP response element-binding protein (pCREB) signaling cascade in the medial amygdala (MeA) in Thy1-hAPPLond/Swe+(APP) mouse model of AD.
Results
Our results demonstrated that APP mice display a significant social recognition deficit which is dependent on the β1-adrenergic system. Moreover, betaxolol, a selective β1-ADR antagonist, impaired social but not object/odor learning in C57Bl/6 mice. Our results identifies activation of the PKA/pCREB downstream of β1-ADR in MeA as responsible signaling cascade for learning of social cues in MeA. Finally, we found that xamoterol, a selective β1-ADR partial agonist, rescued the social recognition deficit of APP mice by increasing nuclear pCREB.
Interpretation
Our data indicate that activation of β1-ADR in MeA is essential for learning of social cues, and that an impairment of this cascade in AD may contribute to pathogenesis and cognitive deficits. Therefore, selective activation of β1-ADR may be used as a therapeutic approach to rescue memory deficits in AD. Further safety and translational studies will be needed to ensure the safety of this approach.
doi:10.1002/acn3.57
PMCID: PMC4036739  PMID: 24883337
6.  A Dramatic Increase of C1q Protein in the CNS during Normal Aging 
The Journal of Neuroscience  2013;33(33):13460-13474.
The decline of cognitive function has emerged as one of the greatest health threats of old age. Age-related cognitive decline is caused by an impacted neuronal circuitry, yet the molecular mechanisms responsible are unknown. C1q, the initiating protein of the classical complement cascade and powerful effector of the peripheral immune response, mediates synapse elimination in the developing CNS. Here we show that C1q protein levels dramatically increase in the normal aging mouse and human brain, by as much as 300-fold. This increase was predominantly localized in close proximity to synapses and occurred earliest and most dramatically in certain regions of the brain, including some but not all regions known to be selectively vulnerable in neurodegenerative diseases, i.e., the hippocampus, substantia nigra, and piriform cortex. C1q-deficient mice exhibited enhanced synaptic plasticity in the adult and reorganization of the circuitry in the aging hippocampal dentate gyrus. Moreover, aged C1q-deficient mice exhibited significantly less cognitive and memory decline in certain hippocampus-dependent behavior tests compared with their wild-type littermates. Unlike in the developing CNS, the complement cascade effector C3 was only present at very low levels in the adult and aging brain. In addition, the aging-dependent effect of C1q on the hippocampal circuitry was independent of C3 and unaccompanied by detectable synapse loss, providing evidence for a novel, complement- and synapse elimination-independent role for C1q in CNS aging.
doi:10.1523/JNEUROSCI.1333-13.2013
PMCID: PMC3742932  PMID: 23946404
7.  Inhibition of mitochondrial fragmentation diminishes Huntington’s disease–associated neurodegeneration 
The Journal of Clinical Investigation  2013;123(12):5371-5388.
Huntington’s disease (HD) is the result of expression of a mutated Huntingtin protein (mtHtt), and is associated with a variety of cellular dysfunctions including excessive mitochondrial fission. Here, we tested whether inhibition of excessive mitochondrial fission prevents mtHtt-induced pathology. We developed a selective inhibitor (P110-TAT) of the mitochondrial fission protein dynamin-related protein 1 (DRP1). We found that P110-TAT inhibited mtHtt-induced excessive mitochondrial fragmentation, improved mitochondrial function, and increased cell viability in HD cell culture models. P110-TAT treatment of fibroblasts from patients with HD and patients with HD with iPS cell–derived neurons reduced mitochondrial fragmentation and corrected mitochondrial dysfunction. P110-TAT treatment also reduced the extent of neurite shortening and cell death in iPS cell–derived neurons in patients with HD. Moreover, treatment of HD transgenic mice with P110-TAT reduced mitochondrial dysfunction, motor deficits, neuropathology, and mortality. We found that p53, a stress gene involved in HD pathogenesis, binds to DRP1 and mediates DRP1-induced mitochondrial and neuronal damage. Furthermore, P110-TAT treatment suppressed mtHtt-induced association of p53 with mitochondria in multiple HD models. These data indicate that inhibition of DRP1-dependent excessive mitochondrial fission with a P110-TAT–like inhibitor may prevent or slow the progression of HD.
doi:10.1172/JCI70911
PMCID: PMC3859413  PMID: 24231356
8.  A Pharmacological Screening Approach for Discovery of Neuroprotective Compounds in Ischemic Stroke 
PLoS ONE  2013;8(7):e69233.
With the availability and ease of small molecule production and design continuing to improve, robust, high-throughput methods for screening are increasingly necessary to find pharmacologically relevant compounds amongst the masses of potential candidates. Here, we demonstrate that a primary oxygen glucose deprivation assay in primary cortical neurons followed by secondary assays (i.e. post-treatment protocol in organotypic hippocampal slice cultures and cortical neurons) can be used as a robust screen to identify neuroprotective compounds with potential therapeutic efficacy. In our screen about 50% of the compounds in a library of pharmacologically active compounds displayed some degree of neuroprotective activity if tested in a pre-treatment toxicity assay but just a few of these compounds, including Carbenoxolone, remained active when tested in a post-treatment protocol. When further examined, Carbenoxolone also led to a significant reduction in infarction size and neuronal damage in the ischemic penumbra when administered six hours post middle cerebral artery occlusion in rats. Pharmacological testing of Carbenoxolone-related compounds, acting by inhibition of 11-β-hydroxysteroid dehydrogenase-1 (11β-HSD1), gave rise to similarly potent in vivo neuroprotection. This indicates that the increase of intracellular glucocorticoid levels mediated by 11β-HSD1 may be involved in the mechanism that exacerbates ischemic neuronal cell death, and inhibiting this enzyme could have potential therapeutic value for neuroprotective therapies in ischemic stroke and other neurodegenerative disorders associated with neuronal injury.
doi:10.1371/journal.pone.0069233
PMCID: PMC3715457  PMID: 23874920
9.  GluN2B Antagonism Affects Interneurons and Leads to Immediate and Persistent Changes in Synaptic Plasticity, Oscillations, and Behavior 
Neuropsychopharmacology  2013;38(7):1221-1233.
Although antagonists to GluN2B-containing N-methyl-𝒟-aspartate receptors (NMDARs) have been widely considered to be neuroprotective under certain pathological conditions, their immediate and lasting impacts on synaptic, circuit, and cognitive functions are poorly understood. In hippocampal slices, we found that the GluN2B-selective antagonist Ro25-6981 (Ro25) reduced synaptic NMDAR responses and consequently neuronal output in a subpopulation of GABAergic interneurons, but not pyramidal neurons. Consistent with these effects, Ro25 reduced GABAergic responses in pyramidal neurons and hence could affect circuit functions by altering the excitation/inhibition balance in the brain. In slices from Ts65Dn mice, a Down syndrome model with excess inhibition and cognitive impairment, acutely applied Ro25-rescued long-term potentiation (LTP) and gamma oscillation deficits, whereas prolonged dosing induced persistent rescue of LTP. In contrast, Ro25 did not impact LTP in wild-type (wt) mice but reduced gamma oscillations both acutely and following prolonged treatment. Although acute Ro25 treatment impaired memory performance in wt mice, memory deficits in Ts65Dn mice were unchanged. Thus, GluN2B–NMDARs contribute to the excitation/inhibition balance via impacts on interneurons, and blocking GluN2B–NMDARs can alter functions that depend on this balance, including synaptic plasticity, gamma oscillations, and memory. That prolonged GluN2B antagonism leads to persistent changes in synaptic and circuit functions, and that the influence of GluN2B antagonism differs between wt and disease model mice, provide critical insight into the therapeutic potential and possible liabilities of GluN2B antagonists.
doi:10.1038/npp.2013.19
PMCID: PMC3656364  PMID: 23340518
GluN2B; interneuron; oscillation; LTP; memory; Down syndrome; glutamate; neurophysiology; GABA; learning & memory; GluN2B; Down syndrome; interneuron; LTP; oscillation
10.  Sex-specific cognitive deficits and regional brain volume loss in mice exposed to chronic, sublethal hypoxia 
Pediatric research  2011;70(1):15-20.
Male sex is an independent risk factor for long-term neurologic deficits in human preterm infants. Using a chronic, sublethal hypoxia (CSH) mouse model of preterm brain injury, we recently demonstrated acute brain volume loss with an increased male susceptibility to hippocampal volume loss and hypomyelination. We now characterize the long-term, sex-specific effects of CSH on cognition and brain growth. Neonatal mice were treated with CSH for 8 days, raised in normoxia thereafter and underwent behavioral testing at 6 weeks of age. Behavioral assays sensitive to hippocampal function were chosen. CSH-treated males had impairments in associative learning, spatial memory and long-term social memory compared to control males. In contrast, CSH-treated females were less impaired. Persistent reductions in hippocampal and cerebellar volumes were found in adult CSH-treated males while regional brain volumes in CSH-treated females were indistinguishable from controls. Similar to human preterm infants, males exposed to hypoxia are especially vulnerable to short-term and long-term deficits in cognition and brain growth.
doi:10.1203/PDR.0b013e31821b98a3
PMCID: PMC3547599  PMID: 21436761
11.  Long-term behavioral assessment of function in an experimental model for ischemic stroke 
Journal of neuroscience methods  2011;196(2):247-257.
Middle cerebral artery occlusion (MCAO) in rats is a well-studied experimental model for ischemic stroke leading to brain infarction and functional deficits. Many preclinical studies have focused on a small time window after the ischemic episode to evaluate functional outcome for screening therapeutic candidates. Short evaluation periods following injury have led to significant setbacks due to lack of information on the delayed effects of treatments, as well as short-lived and reversible neuroprotection, so called false-positive results. In this report, we evaluated long-term functional deficit for 90 days after MCAO in two rat strains with two durations of ischemic insult, in order to identify the best experimental paradigm to assess injury and subsequent recovery. Behavioral outcomes were measured pre-MCAO followed by weekly assessment post-stroke. Behavioral tests included the 18-point composite neurological score, 28-point neuroscore, rearing test, vibrissae-evoked forelimb placing test, foot fault test and the CatWalk. Brain lesions were assessed to correlate injury to behavior outcomes at the end of study. Our results indicate that infarction volume in Sprague-Dawley rats was dependent on occlusion duration. In contrast, the infarction volume in Wistar rats did not correlate with the duration of ischemic episode. Functional outcomes were not dependent on occlusion time in either strain; however, measureable deficits were detectable long-term in limb asymmetry, 18- and 28-point neuroscores, forelimb placing, paw swing speed, and gait coordination. In conclusion, these behavioral assays, in combination with an extended long-term assessment period, can be used for evaluating therapeutic candidates in preclinical models of ischemic stroke.
doi:10.1016/j.jneumeth.2011.01.010
PMCID: PMC3539723  PMID: 21256866
Ischemic stroke; CatWalk; long-term functional recovery; middle cerebral artery occlusion; rat strain
12.  Comprehensive Behavioral Phenotyping of Ts65Dn Mouse Model of Down Syndrome: Activation of β1-Adrenergic Receptor by Xamoterol as a Potential Cognitive Enhancer 
Neurobiology of disease  2011;43(2):397-413.
Down Syndrome (DS) is the most prevalent form of mental retardation caused by genetic abnormalities in humans. This has been successfully modeled in mice to generate the Ts65Dn mouse, a genetic model of DS. This transgenic mouse model shares a number of physical and functional abnormalities with people with DS, including changes in the structure and function of neuronal circuits. Significant abnormalities in noradrenergic (NE-ergic) afferents from the locus coeruleus to the hippocampus, as well as deficits in NE-ergic neurotransmission are detected in these animals.
In the current study we characterized in detail the behavioral phenotype of Ts65Dn mice, in addition to using pharmacological tools for identification of target receptors mediating the learning and memory deficits observed in this model of DS. We undertook a comprehensive approach to mouse phenotyping using a battery of standard and novel tests encompassing: i) locomotion (Activity Chamber, PhenoTyper, and CatWalk), ii) learning and memory (spontaneous alternation, delayed matching-to-place water maze, fear conditioning, and Intellicage), and iii) social behavior.
Ts65Dn mice showed increased locomotor activity in novel and home cage environments. There were significant and reproducible deficits in learning and memory tests including spontaneous alternation, delayed matching-to-place water maze, Intellicage place avoidance and contextual fear conditioning. Although Ts65Dn mice showed no deficit in sociability in the 3-chamber test, a marked impairment in social memory was detected. Xamoterol, a β1-adrenergic receptor (β1-ADR) agonist, effectively restored the memory deficit in contextual fear conditioning, spontaneous alternation and novel object recognition. These behavioral improvements were reversed by betaxolol, a selective β1-ADR antagonist.
In conclusion, our results demonstrate that this mouse model of Down Syndrome display cognitive deficits which is mediated by imbalance in noradrenergic system. In this experimental model of Down Syndrome a selective activation of β1-ADR does restore some of these behavioral deficits. Further mechanistic studies will be needed to investigate the failure of noradrenergic system and the role of β1-ADR in cognitive deficit and pathogenesis of DS in people. Restoring NE neurotransmission or a selective activation of β1-ADR need to be further investigated for development of any potential therapeutic strategies for symptomatic relieve of memory deficit in DS. Furthermore, due to the significant involvement of noradrenergic system in the cardiovascular function further safety and translational studies will be needed to ensure the safety and efficacy of this approach.
doi:10.1016/j.nbd.2011.04.011
PMCID: PMC3539757  PMID: 21527343
Down Syndrome; behavior; Ts65Dn mouse; memory; social interaction; xamoterol; betaxolol; noradrenergic system; neurodegenerative disorder
13.  Transplanted stem cell-secreted VEGF effects post-stroke recovery, inflammation, and vascular repair 
Stem cells (Dayton, Ohio)  2011;29(2):10.1002/stem.584.
Cell transplantation offers a novel therapeutic strategy for stroke; however, how transplanted cells function in vivo is poorly understood. We show for the first time that after sub-acute transplantation into the ischemic brain of human central nervous system stem cells grown as neurospheres (hCNS-SCns), the stem cell-secreted factor, human VEGF (hVEGF), is necessary for cell-induced functional recovery. We correlate this functional recovery to hVEGF-induced effects on the host brain including multiple facets of vascular repair, and its unexpected suppression of the inflammatory response. We found that transplanted hCNS-SCns affected multiple parameters in the brain with different kinetics: early improvement in blood-brain barrier (BBB) integrity and suppression of inflammation was followed by a delayed spatio-temporal regulated increase in neovascularization. These events coincided with a bi-modal pattern of functional recovery: an early recovery independent of neovascularization, and a delayed hVEGF-dependent recovery coincident with neovascularization. Therefore, cell transplantation therapy offers an exciting multi-modal strategy for brain repair in stroke and potentially other disorders with a vascular or inflammatory component.
doi:10.1002/stem.584
PMCID: PMC3524414  PMID: 21732485
angiogenesis; blood brain barrier; dystroglycan; inflammation; Avastin
14.  Npas4: A Neuronal Transcription Factor with a Key Role in Social and Cognitive Functions Relevant to Developmental Disorders 
PLoS ONE  2012;7(9):e46604.
Npas4 is a transcription factor, which is highly expressed in the brain and regulates the formation and maintenance of inhibitory synapses in response to excitatory synaptic activity. A deregulation of the inhibitory-excitatory balance has been associated with a variety of human developmental disorders such as schizophrenia and autism. However, not much is known about the role played by inhibitory synapses and inhibitory pathways in the development of nervous system disorders. We hypothesized that alterations in the inhibitory pathways induced by the absence of Npas4 play a major role in the expression of the symptoms observed in psychiatric disorders. To test this hypothesis we tested mice lacking the transcription factor (Npas4 knock-out mice (Npas4-KO)) in a battery of behavioral assays focusing on general activity, social behaviors, and cognitive functions. Npas4-KO mice are hyperactive in a novel environment, spend less time exploring an unfamiliar ovariectomized female, spend more time avoiding an unfamiliar male during a first encounter, show higher social dominance than their WT littermates, and display pre-pulse inhibition, working memory, long-term memory, and cognitive flexibility deficits. These behavioral deficits may replicate schizophrenia-related symptomatology such as social anxiety, hyperactivity, and cognitive and sensorimotor gating deficits. Immunohistochemistry analyses revealed that Npas4 expression is induced in the hippocampus after a social encounter and that Npas4 regulates the expression of c-Fos in the CA1 and CA3 regions of the hippocampus after a cognitive task. Our results suggest that Npas4 may play a major role in the regulation of cognitive and social functions in the brain with possible implications for developmental disorders such as schizophrenia and autism.
doi:10.1371/journal.pone.0046604
PMCID: PMC3460929  PMID: 23029555
15.  Stratification substantially reduces behavioral variability in the hypoxic–ischemic stroke model 
Brain and Behavior  2012;2(5):698-706.
Stroke is the most common cause of long-term disability, and there are no known drug therapies to improve recovery after stroke. To understand how successful recovery occurs, dissect candidate molecular pathways, and test new therapies, there is a need for multiple distinct mouse stroke models, in which the parameters of recovery after stroke are well defined. Hypoxic–ischemic stroke is a well-established stroke model, but behavioral recovery in this model is not well described. We therefore examined a panel of behavioral tests to see whether they could be used to quantify functional recovery after hypoxic–ischemic stroke. We found that in C57BL/6J mice this stroke model produces high mortality (approximately one-third) and variable stroke sizes, but is fast and easy to perform on a large number of mice. Horizontal ladder test performance on day 1 after stroke was highly and reproducibly correlated with stroke size (P < 0.0001, R2 = 0.7652), and allowed for functional stratification of mice into a group with >18% foot faults and 2.1-fold larger strokes. This group exhibited significant functional deficits for as long as 3 weeks on the horizontal ladder test and through the last day of testing on automated gait analysis (33 days), rotarod (30 days), and elevated body swing test (EBST) (36 days). No deficits were observed in an automated activity chamber. We conclude that stratification by horizontal ladder test performance on day 1 identifies a subset of mice in which functional recovery from hypoxic–ischemic stroke can be studied.
doi:10.1002/brb3.77
PMCID: PMC3489820  PMID: 23139913
Behavior; hypoxic–ischemic stroke; motor recovery; mouse model
16.  Identification of a central role for complement in osteoarthritis 
Nature Medicine  2011;17(12):1674-1679.
Osteoarthritis, characterized by the breakdown of articular cartilage in synovial joints, has long been viewed as the result of “wear and tear”1. Although low-grade inflammation is detected in osteoarthritis, its role is unclear2–4. Here we identify a central role for the inflammatory complement system in the pathogenesis of osteoarthritis. Through proteomic and transcriptomic analyses of synovial fluids and membranes from individuals with osteoarthritis, we find that expression and activation of complement is abnormally high in human osteoarthritic joints. Using mice genetically deficient in C5, C6, or CD59a, we show that complement, and specifically the membrane attack complex (MAC)-mediated arm of complement, is critical to the development of arthritis in three different mouse models of osteoarthritis. Pharmacological modulation of complement in wild-type mice confirmed the results obtained with genetically deficient mice. Expression of inflammatory and degradative molecules was lower in chondrocytes from destabilized joints of C5-deficient mice than C5-sufficient mice, and MAC induced production of these molecules in cultured chondrocytes. Furthermore, MAC co-localized with matrix metalloprotease (MMP)-13 and with activated extracellular signal-regulated kinase (ERK) around chondrocytes in human osteoarthritic cartilage. Our findings indicate that dysregulation of complement in synovial joints plays a critical role in the pathogenesis of osteoarthritis.
doi:10.1038/nm.2543
PMCID: PMC3257059  PMID: 22057346
17.  Thy1-hAPPLond/Swe+ mouse model of Alzheimer's disease displays broad behavioral deficits in sensorimotor, cognitive and social function 
Brain and Behavior  2012;2(2):142-154.
Alzheimer's disease (AD), the most common form of dementia, is an age-dependent progressive neurodegenerative disorder. β-amyloid, a metabolic product of the amyloid precursor protein (APP), plays an important role in the pathogenesis of AD. The Thy1-hAPPLond/Swe+ (line 41) transgenic mouse overexpresses human APP751 and contains the London (V717I) and Swedish (K670M/N671L) mutations. Here, we used a battery of behavioral tests to evaluate general activity, cognition, and social behavior in six-month-old male Thy1-hAPPLond/Swe+ mice. We found hyperactivity in a novel environment as well as significant deficits in spontaneous alternation behavior. In fear conditioning (FC), Thy1-hAPPLond/Swe+ mice did not display deficits in acquisition or in memory retrieval in novel context of tone-cued FC, but they showed significant memory retrieval impairment during contextual testing in an identical environment. Surprisingly, in a standard hidden platform water maze, no significant deficit was detected in mutant mice. However, a delayed-matching-to-place paradigm revealed a significant deficit in Thy1-hAPPLond/Swe+ mice. Lastly, in the social novelty session of a three-chamber test, Thy1-hAPPLond/Swe+ mice exhibited a significantly decreased interest in a novel versus a familiar stranger compared to control mice. This could possibly be explained by decreased social memory or discrimination and may parallel disturbances in social functioning in human AD patients. In conclusion, the Thy1-hAPPLond/Swe+ mouse model of AD displayed a behavioral phenotype that resembles, in part, the cognitive and psychiatric symptoms experienced in AD patients.
doi:10.1002/brb3.41
PMCID: PMC3345358  PMID: 22574282
Alzheimer's disease; amyloid precursor protein; behavior; learning and memory; neurodegenerative disorder; social interaction
18.  The asparaginyl endopeptidase legumain after experimental stroke 
Various proteases in the brain contribute to ischemic brain injury. We investigated the involvement of the asparaginyl endopeptidase legumain after experimental stroke. On the basis of gene array studies and in situ hybridizations, we observed an increase of legumain expression in the peri-infarct area of rats after transient occlusion of the middle cerebral artery (MCAO) for 120 mins with a maximum expression at 24 and 48 h. Immunohistochemical analyses revealed the expression of legumain in Iba1+ microglial cells and glial fibrillary acidic protein-positive astrocytes of the peri-infarct area in mice after MCAO. Post-stroke recovery was also studied in aged legumain-deficient mice (45 to 58 weeks old). Legumain-deficient mice did not show any differences in physiologic parameters compared with respective littermates before, during MCAO (45 mins), and the subsequent recovery period of 8 days. Moreover, legumain deficiency had no effect on mortality, infarct volume, and the neurologic deficit determined by the rotating pole test, a standardized grip strength test, and the pole test. However, a reduced number of invading CD74+ cells in the ischemic hemisphere indicates an involvement in post-stroke inflammation. We conclude that legumain is not essential for the functional deficit after MCAO but may be involved in mechanisms of immune cell invasion.
doi:10.1038/jcbfm.2010.39
PMCID: PMC3023405  PMID: 20234379
astrocyte; CD74; cerebral ischemia; legumain; microglia; poststroke inflammation
19.  Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity 
Neuron  2009;64(4):463-470.
Major histocompatibility complex Class I (MHCI) genes were discovered unexpectedly in healthy CNS neurons in a screen for genes regulated by neural activity. In mice lacking just 2 of the 50+ MHCI genes H2-Kb and H2-Db, ocular dominance (OD) plasticity is enhanced. Mice lacking PirB, an MHCI receptor, have a similar phenotype. H2-Kb and H2-Db are expressed not only in visual cortex, but also in lateral geniculate nucleus (LGN) where protein localization correlates strongly with synaptic markers and complement protein C1q. In KbDb-/- mice developmental refinement of retinogeniculate projections is impaired, similar to C1q-/- mice. These phenotypes in KbDb-/- mice are strikingly similar to those in β2m-/-TAP1-/- mice, which lack cell surface expression of all MHCIs, implying that H2-Kb and H2-Db can account for observed changes in synapse plasticity. H2-Kb and H2-Db ligands, signaling via neuronal MHCI receptors, may enable activity-dependent remodeling of brain circuits during developmental critical periods.
doi:10.1016/j.neuron.2009.10.015
PMCID: PMC2787480  PMID: 19945389
20.  Expression and function of striatal enriched protein tyrosine phosphatase is profoundly altered in cerebral ischemia 
The European journal of neuroscience  2008;27(9):2444-2452.
Striatal enriched protein tyrosine phosphatase (STEP) acts in the central nervous system to dephosphorylate a number of important proteins involved in synaptic function including ERK and NMDA receptor subunits. These proteins are also linked to stroke, in which cerebral ischemia triggers a complex cascade of events. Here we demonstrate that STEP is regulated at both the transcriptional and the post-transcriptional levels in rat models of cerebral ischemia and that its regulation may play a role in the outcome of ischemic insults. After transient middle cerebral artery occlusion, there are profound decreases in the levels of STEP mRNA, whilst in global ischemia STEP mRNA is selectively down-regulated in areas susceptible to ischemic damage. In a neuroprotective preconditioning paradigm, and in regions of the brain that are relatively resistant to ischemic damage, STEP mRNA levels are increased. Furthermore, there is a significant processing of STEP after ischemia to generate a novel species, STEP33, resulting in a redistribution of STEP from membrane-bound to soluble compartments. Concomitant with the cleavage of mature forms of STEP, there are changes in the phosphorylation state of ERK. We show that the cleavage of STEP leads to a catalytically active form, but this cleaved form no longer binds to and dephosphorylates its substrate pERK. Therefore, in response to ischemic insults, there are profound reductions in both the amount and the activity of STEP, its localization, as well as the activity of one of its key substrates, pERK. These changes in STEP may reflect a critical role in the outcomes of ischemic brain injury.
doi:10.1111/j.1460-9568.2008.06209.x
PMCID: PMC2738830  PMID: 18445231
calpain; ERK; MCAO; NMDA receptor; STEP; rat

Results 1-20 (20)