Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Behavioral testing in rodent models of orofacial neuropathic and inflammatory pain 
Brain and Behavior  2012;2(5):678-697.
Orofacial pain conditions are often very debilitating to the patient and difficult to treat. While clinical interest is high, the proportion of studies performed in the orofacial region in laboratory animals is relatively low, compared with other body regions. This is partly due to difficulties in testing freely moving animals and therefore lack of reliable testing methods. Here we present a comprehensive review of the currently used rodent models of inflammatory and neuropathic pain adapted to the orofacial areas, taking into account the difficulties and drawbacks of the existing approaches. We examine the available testing methods and procedures used for assessing the behavioral responses in the face in both mice and rats and provide a summary of some pharmacological agents used in these paradigms to date. The use of these agents in animal models is also compared with outcomes observed in the clinic.
PMCID: PMC3489819  PMID: 23139912
facial pain; pain models; TMD; trigeminal neuralgia
2.  Pathological Alteration in the Choroid Plexus of Alzheimer’s Disease: Implication for New Therapy Approaches 
Morphological alterations of choroid plexus in Alzheimer’s disease (AD) have been extensively investigated. These changes include epithelial atrophy, thickening of the basement membrane, and stroma fibrosis. As a result, synthesis, secretory, and transportation functions are significantly altered resulting in decreased cerebrospinal fluid (CSF) turnover. Recent studies discuss the potential impacts of these changes, including the possibility of reduced resistance to stress insults and slow clearance of toxic compounds from CSF with specific reference to the amyloid peptide. Here, we review new evidences for AD-related changes in the choroid plexus. The data suggest that the significantly altered functions of the choroid plexus contribute to the multiparametric pathogenesis of late-onset AD.
PMCID: PMC3342675  PMID: 22563316
choroid plexus; Alzheimer’s disease; amyloid; mitochondria; cell death; oxidative stress
3.  DREAM regulates BDNF-dependent spinal sensitization 
Molecular Pain  2010;6:95.
The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia.
L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice.
Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization.
PMCID: PMC3027194  PMID: 21167062

Results 1-3 (3)