PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Nicotinic Receptor Alpha7 Expression during Mouse Adrenal Gland Development 
PLoS ONE  2014;9(8):e103861.
The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7G). At embryonic day 12.5 (E12.5) α7G expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7G cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7G expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7G, TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7G. Occasional α7G cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7G cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood.
doi:10.1371/journal.pone.0103861
PMCID: PMC4122369  PMID: 25093893
2.  Prenatal Ablation of Nicotinic Receptor alpha7 Cell Lineages Produces Lumbosacral Spina Bifida the Severity of Which is Modified by Choline and Nicotine Exposure 
Lumbosacral spina bifida is a common debilitating birth defect whose multiple causes are poorly understood. Here we provide the first genetic delineation of cholinergic nicotinic receptor alpha7 (Chrna7) expression and link the ablation of the Chrna7 cell lineage to this condition in the mouse.Using homologous recombination, an IRES-Cre bi-cistronic cassette was introduced into the 3′ noncoding region of Chrna7 (Chrna7:Cre) for identifying cell lineages expressing this gene. This lineage first appears at embryonic day E9.0 in rhombomeres 3 and 5 of the neural tube and extends to cell subsets in most tissues by E14.5. Ablation of the Chrna7:Cre cell lineage in embryos from crosses with conditionally expressed attenuated diphtheria toxin results in precise developmental defects including omphalocele (89%) and open spina bifida (SB; 80%). We hypothesized that like humans, this defect would be modified by environmental compounds such as folic acid or choline, but also nicotine. Prenatal chronic oral nicotine administration substantially worsened the defect to often include the rostral neural tube. In contrast, supplementation of the maternal diet with 2% choline decreased SB prevalence to 38% and dramatically reduced the defect severity. Folic acid supplementation only trended towards a reduced SB frequency. The omphalocele was unaffected by these interventions. These studies identify the Chrna7 cell lineage as participating in posterior neuropore closure and present a novel model of lower SB that can be substantially modified by the prenatal environment.
doi:10.1002/ajmg.a.35372
PMCID: PMC3415211  PMID: 22473653
Nicotinic receptor alpha7; prenatal development; spina bifida; folic acid; choline; nicotine; mouse genetics
3.  Nicotinic Receptor Alpha7 Expression Identifies a Novel Hematopoietic Progenitor Lineage 
PLoS ONE  2013;8(3):e57481.
How inflammatory responses are mechanistically modulated by nicotinic acetylcholine receptors (nAChR), especially by receptors composed of alpha7 (α7) subunits, is poorly defined. This includes a precise definition of cells that express α7 and how these impact on innate inflammatory responses. To this aim we used mice generated through homologous recombination that express an Ires-Cre-recombinase bi-cistronic extension of the endogenous α7 gene that when crossed with a reporter mouse expressing Rosa26-LoxP (yellow fluorescent protein (YFP)) marks in the offspring those cells of the α7 cell lineage (α7lin+). In the adult, on average 20–25 percent of the total CD45+ myeloid and lymphoid cells of the bone marrow (BM), blood, spleen, lymph nodes, and Peyers patches are α7lin+, although variability between litter mates in this value is observed. This hematopoietic α7lin+ subpopulation is also found in Sca1+cKit+ BM cells suggesting the α7 lineage is established early during hematopoiesis and the ratio remains stable in the individual thereafter as measured for at least 18 months. Both α7lin+ and α7lin– BM cells can reconstitute the immune system of naïve irradiated recipient mice and the α7lin+:α7lin– beginning ratio is stable in the recipient after reconstitution. Functionally the α7lin+:α7lin– lineages differ in response to LPS challenge. Most notable is the response to LPS as demonstrated by an enhanced production of IL-12/23(p40) by the α7lin+ cells. These studies demonstrate that α7lin+ identifies a novel subpopulation of bone marrow cells that include hematopoietic progenitor cells that can re-populate an animal’s inflammatory/immune system. These findings suggest that α7 exhibits a pleiotropic role in the hematopoietic system that includes both the direct modulation of pro-inflammatory cell composition and later in the adult the role of modulating pro-inflammatory responses that would impact upon an individual’s lifelong response to inflammation and infection.
doi:10.1371/journal.pone.0057481
PMCID: PMC3586088  PMID: 23469197
4.  The expression of nicotinic receptor alpha7 during cochlear development 
Brain and Behavior  2012;2(5):628-639.
Nicotinic acetylcholine receptor alpha7 expression was examined in the developing and adult auditory system using mice that were modified through homologous recombination to coexpress either GFP (alpha7GFP) or Cre (alpha7Cre), respectively. The expression of alpha7GFP is first detected at embryonic (E) day E13.5 in cells of the spiral prominence. By E14.5, sensory regions including the putative outer hair cells and Deiters' cells express alpha7GFP as do solitary efferent fibers. This pattern diminishes after E16.5 in a basal to apex progression, as Hensen's cells and cells of the spiral ligament acquire alpha7GFP expression. At birth and thereafter alpha7GFP also identifies a subset of spiral ganglion cells whose processes terminate on inner hair cells. Efferent fibers identified by peripherin or calcitonin gene-related protein do not coexpress alpha7GFP. In addition to cochlear structures, there is strong expression of alpha7GFP by cells of the central auditory pathways including the ventral posterior cochlear nucleus, lateral lemniscus, central inferior colliculus, and the medial geniculate nucleus. Our findings suggest that alpha7 expression by both neuronal and non-neuronal cells has the potential to impact multiple auditory functions through mechanisms that are not traditionally attributed to this receptor.
doi:10.1002/brb3.84
PMCID: PMC3489815  PMID: 23139908
Alpha7; auditory system; cochlear; development; mouse; nicotinic acetylcholine receptor
5.  Nicotinic Receptor Alpha7 Expression during Tooth Morphogenesis Reveals Functional Pleiotropy 
PLoS ONE  2012;7(5):e36467.
The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ.
doi:10.1371/journal.pone.0036467
PMCID: PMC3364260  PMID: 22666322
6.  Neuronal nicotinic alpha7 receptors modulate early neutrophil infiltration to sites of skin inflammation 
Background
A major site of initiation of inflammatory responses upon physical perturbation(s) and infection by invading organisms is the skin. Control of responses in this organ is, in part, modulated by the neuronal nicotinic acetylcholine receptor (nAChR) alpha7.
Methods
To further investigate the role of alpha7 in skin inflammatory responses, a local inflammatory response was induced by topical application of croton oil to the ear skin of wild-type (alpha7WT) and alpha7 knock-out (alpha7KO) mice. Cells infiltrating the inflamed tissue were characterized by flow cytometry and RNA analysis.
Results
Six hours following croton oil application, analysis of infiltrating cells showed that the alpha7KO mice exhibited a significantly enhanced number of cells, and specifically, of Ly6G positive neutrophils. Macrophage and lymphocyte infiltration was equivalent in the alpha7KO and alpha7WT mice. RNA analysis showed that IL-1β and IL-6 were increased significantly in the infiltrating cells of the alpha7KO mouse, although TNF failed to reach significance. In contrast, resident cells of the skin exhibited no differences in these cytokines between genotypes. Both resident and infiltrating cell populations from alpha7KO mice did show elevated message levels for the adhesion protein ICAM1. Measurement of chemokines revealed enhanced expression of the skin-related CCL27 by resident cells in alpha7KO mice. Further, we demonstrate that the population of Ly6G+ neutrophils at the croton oil-inflamed skin site expresses low levels of CCR10, a receptor for CCL27 normally associated with lymphocytes.
Conclusion
nAChRalpha7 in the skin can impact on early local inflammatory responses mediated through a novel population of neutrophils that are Ly6G+CCR10lo.
doi:10.1186/1742-2094-7-38
PMCID: PMC2913948  PMID: 20624304
7.  Choline Promotes Nicotinic Receptor α4 + β2 Up-regulation* 
The Journal of Biological Chemistry  2010;285(26):19793-19801.
Neuronal nicotinic acetylcholine receptors (nAChR) composed of α4 + β2 subunits, the high affinity nicotine-binding site in the mammalian brain, up-regulate in response to chronic nicotine exposure. The identities of endogenous mediators of this process are unknown. We find that choline also up-regulates α4 + β2 nAChRs stably expressed by HEK293 cells as measured by increased [3H]epibatidine density. Choline-mediated up-regulation is dose-dependent and corresponds with an increase in β2 subunit protein expression. The choline kinase inhibitor hemicholinium-3 inhibits ∼60% of choline-mediated up-regulation revealing both an HC3-dependent and -independent pathway. Furthermore, choline-mediated up-regulation is not additive with up-regulation agents such as nicotine, but it is additive with weaker promoters of the up-regulation process. When co-applied with the pro-inflammatory cytokine tumor necrosis factor α, choline-mediated up-regulation is increased further through a mechanism that includes an increase in both α4 and β2 protein expression, and this is inhibited by the p38 MAPK inhibitor SB202190. These findings extend the view that up-regulation of α4 + β2 nAChRs is a normal physiological response to altered metabolic and inflammatory conditions.
doi:10.1074/jbc.M110.108803
PMCID: PMC2888390  PMID: 20392695
Inflammation; Nicotinic Acetylcholine Receptors; p38 MAPK; Receptor Regulation; Tumor Necrosis Factor (TNF); Choline
8.  Nicotinic Acetylcholine Receptor Expression in the Hippocampus of 27 Mouse Strains Reveals Novel Inhibitory Circuitry 
Hippocampus  2008;18(8):737-749.
Mouse strains are well-characterized to exhibit differences in their physiological and behavioral responses to nicotine. This report examines the expression of the high-affinity nicotine binding receptor subunit, neuronal nicotinic receptor subunit alpha4 (nAChRα4), in the dorsal hippocampus of 27 inbred mouse strains. Multiple differences among mouse strains in the cellular expression of nAChRα4 between subregions of the hippocampal field are evident. Differences that we describe in the expression of nAChRα4 suggest mouse strains of diverse genetic origin could exhibit significant variation in how this receptor contributes to modulating intra-hippocampal circuitry. These findings define a genetic frame-work in which the strain-specific responses to nicotine include underlying contributions by the varied anatomical context in which nAChRs are expressed.
doi:10.1002/hipo.20430
PMCID: PMC2792088  PMID: 18446824
Nicotinic Receptor; mouse strains; hippocampus; genetics; cytoarchitecture
9.  Mouse Chromosome 11 Harbors Genetic Determinants of Hippocampal Strain-Specific Nicotinic Receptor Expression 
Hippocampus  2008;18(8):750-757.
Differences between isogenic mouse strains in cellular expression of the neuronal nicotinic acetylcholine receptor subunit alpha4 (nAChRα4) by the dorsal hippocampus are well known. To investigate further the genetic basis of these variations, expression of the nAChRα4 subunit was measured in congenic mouse lines derived from two strains exhibiting notable divergence in the expression of this subunit: C3H and C57BL/6. Congenic lines carrying reciprocally introgressed regions (quantitative trait loci; QTL) from chromosomes 4, 5, and 12 each retained the phenotype most closely associated with the parental strain. However, in congenic lines harboring the reciprocal transfer of a chromosome 11 QTL, a characteristic difference in the ratio of interneurons versus astrocytes expressing nAChRα4 in the CA1 region is reversed relative to the parental strain. These finding suggest that this chromosomal segment harbors genes that regulate strain distinct hippocampal morphology that is revealed by nAChRα4 expression.
doi:10.1002/hipo.20454
PMCID: PMC2775497  PMID: 18528848
Nicotinic receptors; mouse strains; interneurons; hippocampus; congenic analysis
10.  Neuronal Nicotinic Alpha7 Receptors Modulate Inflammatory Cytokine Production in the Skin Following Ultraviolet Radiation 
Journal of neuroimmunology  2008;193(1-2):130-139.
The anti-inflammatory effects of the neuronal nicotinic receptor alpha7 (nAChRα7) are proposed to require acetylcholine release from vagal efferents. The necessity for vagal innervation in this anti-inflammatory pathway was tested in the skin, which lacks parasympathetic innervation, using ultraviolet radiation (UVB) to induce a local pro-inflammatory response. Cytokine responses to UV in mice administered chronic oral nicotine, a nAChR agonist, were reduced. Conversely, nAChRα7 knock-out mice exposed to UVB elicit an enhanced pro-inflammatory cytokine response in the skin. Altered pro-inflammatory responses correlated with changes in SOCS3 protein. These results demonstrate that nAChRα7 can participate in modulating a local pro-inflammatory response in the absence of parasympathetic innervation.
doi:10.1016/j.jneuroim.2007.10.029
PMCID: PMC2693390  PMID: 18077004
Neuronal Nicotinic; Inflammation; Ultraviolet Radiation; Cytokine; SOCS3
11.  A Candidate Gene Approach Identifies the CHRNA5-A3-B4 Region as a Risk Factor for Age-Dependent Nicotine Addiction 
PLoS Genetics  2008;4(7):e1000125.
People who begin daily smoking at an early age are at greater risk of long-term nicotine addiction. We tested the hypothesis that associations between nicotinic acetylcholine receptor (nAChR) genetic variants and nicotine dependence assessed in adulthood will be stronger among smokers who began daily nicotine exposure during adolescence. We compared nicotine addiction—measured by the Fagerstrom Test of Nicotine Dependence—in three cohorts of long-term smokers recruited in Utah, Wisconsin, and by the NHLBI Lung Health Study, using a candidate-gene approach with the neuronal nAChR subunit genes. This SNP panel included common coding variants and haplotypes detected in eight α and three β nAChR subunit genes found in European American populations. In the 2,827 long-term smokers examined, common susceptibility and protective haplotypes at the CHRNA5-A3-B4 locus were associated with nicotine dependence severity (p = 2.0×10−5; odds ratio = 1.82; 95% confidence interval 1.39–2.39) in subjects who began daily smoking at or before the age of 16, an exposure period that results in a more severe form of adult nicotine dependence. A substantial shift in susceptibility versus protective diplotype frequency (AA versus BC = 17%, AA versus CC = 27%) was observed in the group that began smoking by age 16. This genetic effect was not observed in subjects who began daily nicotine use after the age of 16. These results establish a strong mechanistic link among early nicotine exposure, common CHRNA5-A3-B4 haplotypes, and adult nicotine addiction in three independent populations of European origins. The identification of an age-dependent susceptibility haplotype reinforces the importance of preventing early exposure to tobacco through public health policies.
Author Summary
Tobacco use is a global health care problem, and persistent smoking takes an enormous toll on individual health. The onset of daily smoking in adolescence is related to chronic use and severe nicotine dependence in adulthood. Since nicotine is the key addictive chemical in tobacco, we tested the hypothesis that genetic variants within nicotinic acetylcholine receptors will influence the severity of addiction measured in adulthood. Using genomic resequencing to define the patterns of variation found in these candidate genes, we observed that common haplotypes in the CHRNA5-A3-B4 gene cluster are associated with adult nicotine addiction, specifically among those who began daily smoking before age 17. We show that in populations of European origins, one haplotype is a risk factor for dependence, one is protective, and one is neutral. These observations suggest that genetic determinants expressed during human adolescence contribute to the risk of lifetime addiction severity produced from early onset of cigarette use. Because disease risk from the adverse health effects of tobacco smoke is related to lifetime tobacco exposure, the finding that an age-dependent effect of these haplotypes has a strong influence on lifetime smoking behavior reinforces the public health significance of delaying smoking onset.
doi:10.1371/journal.pgen.1000125
PMCID: PMC2442220  PMID: 18618000
12.  Neuronal nicotinic acetylcholine receptor expression and function on nonneuronal cells 
The AAPS Journal  2006;7(4):E885-E894.
Of the thousands of proven carcinogens and toxic agents contained within a cigarette, nicotine, while being the addictive agent, is often viewed as the least harmful of these compounds. Nicotine is a lipophilic molecule whose effects on neuronal nicotinic acetylcholine receptors (nAChR) have been primarily focused on its physiologic impact within the confines of the brain and peripheral nervous system. However, recently, many studies have found neuronal nAChRs to be expressed on many different nonneuronal cell types throughout the body, where increasing evidence suggests they have important roles in determining the consequences of nicotine use on multiple organs systems and diseases as diverse as ulcerative colitis, chronic pulmonary obstructive disease, and diabetes, as well as the neurologic disorders of Parkinson’s and Alzheimer’s disease. This review highlights current evidence for the expression of peripheral nAChRs in cells other than neurons and how they participate in fundamental processes, such as inflammation. Understanding these processes may offer novel therapeutic strategies to approach inflammatory diseases, as well as precautions in the design of interventional drugs.
doi:10.1208/aapsj070486
PMCID: PMC2750958  PMID: 16594641
nicotine; inflammation; nicotinic receptors; nonneuronal
13.  Prenatal Ablation of Nicotinic Receptor alpha7 Cell Lineages Produces Lumbosacral Spina Bifida the Severity of Which is Modified by Choline and Nicotine Exposure 
Lumbosacral spina bifida is a common debilitating birth defect whose multiple causes are poorly understood. Here, we provide the first genetic delineation of cholinergic nicotinic receptor alpha7 (Chrna7) expression and link the ablation of the Chrna7 cell lineage to this condition in the mouse. Using homologous recombination, an IRES-Cre bi-cistronic cassette was introduced into the 3′ noncoding region of Chrna7 (Chrna7:Cre) for identifying cell lineages expressing this gene. This lineage first appears at embryonic day E9.0 in rhombomeres 3 and 5 of the neural tube and extends to cell subsets in most tissues by E14.5. Ablation of the Chrna7:Cre cell lineage in embryos from crosses with conditionally expressed attenuated diphtheria toxin results in precise developmental defects including omphalocele (89%) and open spina bifida (SB; 80%). We hypothesized that like humans, this defect would be modified by environmental compounds not only folic acid or choline but also nicotine. Prenatal chronic oral nicotine administration substantially worsened the defect to often include the rostral neural tube. In contrast, supplementation of the maternal diet with 2% choline decreased SB prevalence to 38% and dramatically reduced the defect severity. Folic acid supplementation only trended towards a reduced SB frequency. The omphalocele was unaffected by these interventions. These studies identify the Chrna7 cell lineage as participating in posterior neuropore closure and present a novel model of lower SB that can be substantially modified by the prenatal environment. © 2012 Wiley Periodicals, Inc.
doi:10.1002/ajmg.a.35372
PMCID: PMC3415211  PMID: 22473653
nicotinic receptor alpha7; prenatal development; spina bifida; folic acid; choline; nicotine; mouse genetics

Results 1-13 (13)