PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome 
Cell reports  2014;7(4):1077-1092.
Summary
A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.
doi:10.1016/j.celrep.2014.03.036
PMCID: PMC4251471  PMID: 24794428
2.  Comprehensive Behavioral Phenotyping of Ts65Dn Mouse Model of Down Syndrome: Activation of β1-Adrenergic Receptor by Xamoterol as a Potential Cognitive Enhancer 
Neurobiology of disease  2011;43(2):397-413.
Down Syndrome (DS) is the most prevalent form of mental retardation caused by genetic abnormalities in humans. This has been successfully modeled in mice to generate the Ts65Dn mouse, a genetic model of DS. This transgenic mouse model shares a number of physical and functional abnormalities with people with DS, including changes in the structure and function of neuronal circuits. Significant abnormalities in noradrenergic (NE-ergic) afferents from the locus coeruleus to the hippocampus, as well as deficits in NE-ergic neurotransmission are detected in these animals.
In the current study we characterized in detail the behavioral phenotype of Ts65Dn mice, in addition to using pharmacological tools for identification of target receptors mediating the learning and memory deficits observed in this model of DS. We undertook a comprehensive approach to mouse phenotyping using a battery of standard and novel tests encompassing: i) locomotion (Activity Chamber, PhenoTyper, and CatWalk), ii) learning and memory (spontaneous alternation, delayed matching-to-place water maze, fear conditioning, and Intellicage), and iii) social behavior.
Ts65Dn mice showed increased locomotor activity in novel and home cage environments. There were significant and reproducible deficits in learning and memory tests including spontaneous alternation, delayed matching-to-place water maze, Intellicage place avoidance and contextual fear conditioning. Although Ts65Dn mice showed no deficit in sociability in the 3-chamber test, a marked impairment in social memory was detected. Xamoterol, a β1-adrenergic receptor (β1-ADR) agonist, effectively restored the memory deficit in contextual fear conditioning, spontaneous alternation and novel object recognition. These behavioral improvements were reversed by betaxolol, a selective β1-ADR antagonist.
In conclusion, our results demonstrate that this mouse model of Down Syndrome display cognitive deficits which is mediated by imbalance in noradrenergic system. In this experimental model of Down Syndrome a selective activation of β1-ADR does restore some of these behavioral deficits. Further mechanistic studies will be needed to investigate the failure of noradrenergic system and the role of β1-ADR in cognitive deficit and pathogenesis of DS in people. Restoring NE neurotransmission or a selective activation of β1-ADR need to be further investigated for development of any potential therapeutic strategies for symptomatic relieve of memory deficit in DS. Furthermore, due to the significant involvement of noradrenergic system in the cardiovascular function further safety and translational studies will be needed to ensure the safety and efficacy of this approach.
doi:10.1016/j.nbd.2011.04.011
PMCID: PMC3539757  PMID: 21527343
Down Syndrome; behavior; Ts65Dn mouse; memory; social interaction; xamoterol; betaxolol; noradrenergic system; neurodegenerative disorder
3.  Thy1-hAPPLond/Swe+ mouse model of Alzheimer's disease displays broad behavioral deficits in sensorimotor, cognitive and social function 
Brain and Behavior  2012;2(2):142-154.
Alzheimer's disease (AD), the most common form of dementia, is an age-dependent progressive neurodegenerative disorder. β-amyloid, a metabolic product of the amyloid precursor protein (APP), plays an important role in the pathogenesis of AD. The Thy1-hAPPLond/Swe+ (line 41) transgenic mouse overexpresses human APP751 and contains the London (V717I) and Swedish (K670M/N671L) mutations. Here, we used a battery of behavioral tests to evaluate general activity, cognition, and social behavior in six-month-old male Thy1-hAPPLond/Swe+ mice. We found hyperactivity in a novel environment as well as significant deficits in spontaneous alternation behavior. In fear conditioning (FC), Thy1-hAPPLond/Swe+ mice did not display deficits in acquisition or in memory retrieval in novel context of tone-cued FC, but they showed significant memory retrieval impairment during contextual testing in an identical environment. Surprisingly, in a standard hidden platform water maze, no significant deficit was detected in mutant mice. However, a delayed-matching-to-place paradigm revealed a significant deficit in Thy1-hAPPLond/Swe+ mice. Lastly, in the social novelty session of a three-chamber test, Thy1-hAPPLond/Swe+ mice exhibited a significantly decreased interest in a novel versus a familiar stranger compared to control mice. This could possibly be explained by decreased social memory or discrimination and may parallel disturbances in social functioning in human AD patients. In conclusion, the Thy1-hAPPLond/Swe+ mouse model of AD displayed a behavioral phenotype that resembles, in part, the cognitive and psychiatric symptoms experienced in AD patients.
doi:10.1002/brb3.41
PMCID: PMC3345358  PMID: 22574282
Alzheimer's disease; amyloid precursor protein; behavior; learning and memory; neurodegenerative disorder; social interaction

Results 1-3 (3)