Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Secretory Leukocyte Protease Inhibitor Plays an Important Role in the Regulation of Allergic Asthma in Mice 
Secretory leukocyte protease inhibitor (SLPI) is an anti-inflammatory protein that is observed at high levels in asthma patients. Resiquimod, a TLR7/8 ligand, is protective against acute and chronic asthma, and it increases SLPI expression of macrophages in vitro. However, the protective role played by SLPI and the interactions between the SLPI and resiquimod pathways in the immune response occurring in allergic asthma have not been fully elucidated. To evaluate the role of SLPI in the development of asthma phenotypes and the effect of resiquimod treatment on SLPI, we assessed airway resistance and inflammatory parameters in the lungs of OVA-induced asthmatic SLPI transgenic and knockout mice and in mice treated with resiquimod. Compared with wild-type mice, allergic SLPI transgenic mice showed a decrease in lung resistance (p < 0.001), airway eosinophilia (p < 0.001), goblet cell hyperplasia (p < 0.001), and plasma IgE levels (p < 0.001). Allergic SLPI knockout mice displayed phenotype changes significantly more severe compared with wild-type mice. These phenotypes included lung resistance (p < 0.001), airway eosinophilia (p < 0.001), goblet cell hyperplasia (p < 0.001), cytokine levels in the lungs (p < 0.05), and plasma IgE levels (p < 0.001). Treatment of asthmatic transgenic mice with resiquimod increased the expression of SLPI and decreased inflammation in the lungs; resiquimod treatment was still effective in asthmatic SLPI knockout mice. Taken together, our study showed that the expression of SLPI protects against allergic asthma phenotypes, and treatment by resiquimod is independent of SLPI expression, displayed through the use of transgenic and knockout SLPI mice.
PMCID: PMC3104396  PMID: 21335488
2.  Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury 
Brain  2009;133(1):126-138.
Secretory leukocyte protease inhibitor is a serine protease inhibitor produced by various cell types, including neutrophils and activated macrophages, and has anti-inflammatory properties. It has been shown to promote wound healing in the skin and other non-neural tissues, however, its role in central nervous system injury was not known. We now report a beneficial role for secretory leukocyte protease inhibitor after spinal cord injury. After spinal cord contusion injury in mice, secretory leukocyte protease inhibitor is expressed primarily by astrocytes and neutrophils but not macrophages. We show, using transgenic mice over-expressing secretory leukocyte protease inhibitor, that this molecule has an early protective effect after spinal cord contusion injury. Furthermore, wild-type mice treated for the first week after spinal cord contusion injury with recombinant secretory leukocyte protease inhibitor exhibit sustained improvement in locomotor control and reduced secondary tissue damage. Recombinant secretory leukocyte protease inhibitor injected intraperitoneally localizes to the nucleus of circulating leukocytes, is detected in the injured spinal cord, reduces activation of nuclear factor-κB and expression of tumour necrosis factor-α. Administration of recombinant secretory leukocyte protease inhibitor might therefore be useful for the treatment of acute spinal cord injury.
PMCID: PMC2801328  PMID: 20047904
spinal cord injury; neuroinflammation; wound healing; neutrophil; astrocytes; macrophage
4.  Brg-1 mediates the constitutive and fenretinide-induced expression of SPARC in mammary carcinoma cells via its interaction with transcription factor Sp1 
Molecular Cancer  2010;9:210.
Secreted protein, acidic and rich in cysteine (SPARC) is a matricellular protein that mediates cell-matrix interactions. It has been shown, depending on the type of cancer, to possess either pro- or anti-tumorigenic properties. The transcriptional regulation of the SPARC gene expression has not been fully elucidated and the effects of anti-cancer drugs on this process have not been explored.
In the present study, we demonstrated that chromatin remodeling factor Brg-1 is recruited to the proximal SPARC promoter region (-130/-56) through an interaction with transcription factor Sp1. We identified Brg-1 as a critical regulator for the constitutive expression levels of SPARC mRNA and protein in mammary carcinoma cell lines and for SPARC secretion into culture media. Furthermore, we found that Brg-1 cooperates with Sp1 to enhance SPARC promoter activity. Interestingly, fenretinide [N-4(hydroxyphenyl) retinamide, 4-HPR], a synthetic retinoid with anti-cancer properties, was found to up-regulate the transcription, expression and secretion of SPARC via induction of the Brg-1 in a dose-dependent manner. Finally, our results demonstrated that fenretinide-induced expression of SPARC contributes significantly to a decreased invasion of mammary carcinoma cells.
Overall, our results reveal a novel cooperative role of Brg-1 and Sp1 in mediating the constitutive and fenretinide-induced expression of SPARC, and provide new insights for the understanding of the anti-cancer effects of fenretinide.
PMCID: PMC2924311  PMID: 20687958
5.  Nuclear Translocation of β-Actin Is Involved in Transcriptional Regulation during Macrophage Differentiation of HL-60 Cells 
Molecular Biology of the Cell  2010;21(5):811-820.
The functional significance of nuclear translocation of β-actin remains unclear. Here, we demonstrate that PMA induces β-actin accumulation in the nucleus and binding to various target genes with different functions. We also find that accumulated nuclear β-actin is involved in recruitment of RNA polymerase II and in transcription regulation.
Studies have shown that nuclear translocation of actin occurs under certain conditions of cellular stress; however, the functional significance of actin import remains unclear. Here, we demonstrate that during the phorbol 12-myristate 13-acetate (PMA)-induced differentiation of HL-60 cells toward macrophages, β-actin translocates from the cytoplasm to the nucleus and that this process is dramatically inhibited by pretreatment with p38 mitogen-activated protein kinase inhibitors. Using chromatin immunoprecipitation-on-chip assays, the genome-wide maps of β-actin binding to gene promoters in response to PMA treatment is analyzed in HL-60 cells. A gene ontology-based analysis shows that the identified genes belong to a broad spectrum of functional categories such as cell growth and differentiation, signal transduction, response to external stimulus, ion channel activity, and immune response. We also demonstrate a correlation between β-actin occupancy and the recruitment of RNA polymerase II at six selected target genes, and β-actin knockdown decreases the mRNA expression levels of these target genes induced by PMA. We further show that nuclear β-actin is required for PMA-induced transactivation of one target gene, solute carrier family 11 member 1, which is important for macrophage activation. Our data provide novel evidence that nuclear accumulation of β-actin is involved in transcriptional regulation during macrophage-like differentiation of HL-60 cells.
PMCID: PMC2828967  PMID: 20053683

Results 1-5 (5)