Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("tafesse, Saba")
1.  Lack of aprataxin impairs mitochondrial functions via downregulation of the APE1/NRF1/NRF2 pathway 
Human Molecular Genetics  2015;24(16):4516-4529.
Ataxia oculomotor apraxia type 1 (AOA1) is an autosomal recessive disease caused by mutations in APTX, which encodes the DNA strand-break repair protein aprataxin (APTX). CoQ10 deficiency has been identified in fibroblasts and muscle of AOA1 patients carrying the common W279X mutation, and aprataxin has been localized to mitochondria in neuroblastoma cells, where it enhances preservation of mitochondrial function. In this study, we show that aprataxin deficiency impairs mitochondrial function, independent of its role in mitochondrial DNA repair. The bioenergetics defect in AOA1-mutant fibroblasts and APTX-depleted Hela cells is caused by decreased expression of SDHA and genes encoding CoQ biosynthetic enzymes, in association with reductions of APE1, NRF1 and NRF2. The biochemical and molecular abnormalities in APTX-depleted cells are recapitulated by knockdown of APE1 in Hela cells and are rescued by overexpression of NRF1/2. Importantly, pharmacological upregulation of NRF1 alone by 5-aminoimidazone-4-carboxamide ribonucleotide does not rescue the phenotype, which, in contrast, is reversed by the upregulation of NRF2 by rosiglitazone. Accordingly, we propose that the lack of aprataxin causes reduction of the pathway APE1/NRF1/NRF2 and their target genes. Our findings demonstrate a critical role of APTX in transcription regulation of mitochondrial function and the pathogenesis of AOA1 via a novel pathomechanistic pathway, which may be relevant to other neurodegenerative diseases.
PMCID: PMC4512623  PMID: 25976310
2.  Bioenergetic markers in skin fibroblasts of sporadic ALS and PLS patients 
Annals of neurology  2014;76(4):620-624.
Energy metabolism could influence ALS and PLS pathogenesis and the response to therapy. We developed a novel assay to simultaneously assess mitochondrial content and membrane potential in patients’ skin fibroblasts. In ALS and PLS fibroblasts, membrane potential was increased and mitochondrial content decreased, relative to healthy controls. In ALS, higher mitochondrial membrane potential correlated with age at diagnosis and in PLS it correlated with disease severity. These unprecedented findings in ALS and PLS fibroblasts could shed new light onto disease pathogenesis and help developing biomarkers to predict disease evolution and the individual response to therapy in motor neuron diseases.
PMCID: PMC4192005  PMID: 25090982
ALS; PLS; Mitochondria; membrane potential; fibroblasts; bioenergetics
3.  Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency 
EMBO Molecular Medicine  2014;6(8):1016-1027.
Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2−/−) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-old Tk2−/− mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2−/−200dCMP/dTMP) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated). A second trial of dCMP+dTMP each at 400 mg/kg/day showed even greater phenotypic and biochemical improvements. In conclusion, dCMP/dTMP supplementation is the first effective pharmacologic treatment for Tk2 deficiency.
Subject Categories Genetics, Gene Therapy & Genetic Disease; Metabolism
PMCID: PMC4154130  PMID: 24968719
deoxycytidine monophosphate; deoxythymidine monophosphate; encephalomyopathy; therapy; thymidine kinase
4.  Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy 
Brain  2011;134(11):3326-3332.
Mitochondrial neurogastrointestinal encephalomyopathy is a rare multisystemic autosomic recessive disorder characterized by: onset typically before the age of 30 years; ptosis; progressive external ophthalmoplegia; gastrointestinal dysmotility; cachexia; peripheral neuropathy; and leucoencephalopathy. The disease is caused by mutations in the TYMP gene encoding thymidine phosphorylasethymine phosphorylase. Anecdotal reports suggest that allogeneic haematopoetic stem cell transplantation may be beneficial for mitochondrial neurogastrointestinal encephalomyopathy, but is associated with a high mortality. After selecting patients who fulfilled the clinical criteria for mitochondrial neurogastrointestinal encephalomyopathy and had severe thymidine phosphorylase deficiency in the buffy coat (<10% of normal activity), we reviewed their medical records and laboratory studies. We identified 102 patients (50 females) with mitochondrial neurogastrointestinal encephalomyopathy and an average age of 32.4 years (range 11–59 years). We found 20 novel TYMP mutations. The average age-at-onset was 17.9 years (range 5 months to 35 years); however, the majority of patients reported the first symptoms before the age of 12 years. The patient distribution suggests a relatively high prevalence in Europeans, while the mutation distribution suggests founder effects for a few mutations, such as c.866A>G in Europe and c.518T>G in the Dominican Republic, that could guide genetic screening in each location. Although the sequence of clinical manifestations in the disease varied, half of the patients initially had gastrointestinal symptoms. We confirmed anecdotal reports of intra- and inter-familial clinical variability and absence of genotype–phenotype correlation in the disease, suggesting genetic modifiers, environmental factors or both contribute to disease manifestations. Acute medical events such as infections often provoked worsening of symptoms, suggesting that careful monitoring and early treatment of intercurrent illnesses may be beneficial. We observed endocrine/exocrine pancreatic insufficiency, which had not previously been reported. Kaplan–Meier analysis revealed significant mortality between the ages of 20 and 40 years due to infectious or metabolic complications. Despite increasing awareness of this illness, a high proportion of patients had been misdiagnosed. Early and accurate diagnosis of mitochondrial neurogastrointestinal encephalomyopathy, together with timely treatment of acute intercurrent illnesses, may retard disease progression and increase the number of patients eligible for allogeneic haematopoetic stem cell transplantation.
PMCID: PMC3212717  PMID: 21933806
mitochondrial disease; MNGIE; encephalomyopathy; TYMP; BMT
5.  Effects of Inhibiting CoQ10 Biosynthesis with 4-nitrobenzoate in Human Fibroblasts 
PLoS ONE  2012;7(2):e30606.
Coenzyme Q10 (CoQ10) is a potent lipophilic antioxidant in cell membranes and a carrier of electrons in the mitochondrial respiratory chain. We previously characterized the effects of varying severities of CoQ10 deficiency on ROS production and mitochondrial bioenergetics in cells harboring genetic defects of CoQ10 biosynthesis. We observed a unimodal distribution of ROS production with CoQ10 deficiency: cells with <20% of CoQ10 and 50–70% of CoQ10 did not generate excess ROS while cells with 30–45% of CoQ10 showed increased ROS production and lipid peroxidation. Because our previous studies were limited to a small number of mutant cell lines with heterogeneous molecular defects, here, we treated 5 control and 2 mildly CoQ10 deficient fibroblasts with varying doses of 4-nitrobenzoate (4-NB), an analog of 4-hydroxybenzoate (4-HB) and inhibitor of 4-para-hydroxybenzoate:polyprenyl transferase (COQ2) to induce a range of CoQ10 deficiencies. Our results support the concept that the degree of CoQ10 deficiency in cells dictates the extent of ATP synthesis defects and ROS production and that 40–50% residual CoQ10 produces maximal oxidative stress and cell death.
PMCID: PMC3281033  PMID: 22359546
6.  Unbalanced deoxynucleotide pools cause mitochondrial DNA instability in thymidine phosphorylase-deficient mice 
Human Molecular Genetics  2008;18(4):714-722.
Replication and repair of DNA require equilibrated pools of deoxynucleoside triphosphate precursors. This concept has been proven by in vitro studies over many years, but in vivo models are required to demonstrate its relevance to multicellular organisms and to human diseases. Accordingly, we have generated thymidine phosphorylase (TP) and uridine phosphorylase (UP) double knockout (TP−/−UP−/−) mice, which show severe TP deficiency, increased thymidine and deoxyuridine in tissues and elevated mitochondrial deoxythymidine triphosphate. As consequences of the nucleotide pool imbalances, brains of mutant mice developed partial depletion of mtDNA, deficiencies of respiratory chain complexes and encephalopathy. These findings largely account for the pathogenesis of mitochondrial neurogastrointestinal encephalopathy (MNGIE), the first inherited human disorder of nucleoside metabolism associated with somatic DNA instability.
PMCID: PMC2638828  PMID: 19028666
7.  Thymidine and deoxyuridine accumulate in tissues of patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) 
FEBS letters  2007;581(18):3410-3414.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease due to ECGF1 gene mutations causing thymidine phosphorylase (TP) deficiency. Analysis of post-mortem samples of five MNGIE patients and two controls, revealed TP activity in all control tissues, but not in MNGIE samples. Converse to TP activity, thymidine and deoxyuridine were absent in control samples, but present in all tissues of MNGIE patients. Concentrations of both nucleosides in the tissues were generally higher than those observed in plasma of MNGIE patients. Our observations indicate that in the absence of TP activity, tissues accumulate nucleosides, which are excreted into plasma.
PMCID: PMC1986782  PMID: 17612528
Mitochondria; MNGIE; thymidine phosphorylase; thymidine; deoxyuridine

Results 1-7 (7)