Search tips
Search criteria

Results 1-25 (65)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  Frequency and Topography of Cerebral Microbleeds in Dementia with Lewy bodies Compared to Alzheimer’s Disease 
Parkinsonism & related disorders  2015;21(9):1101-1104.
To determine the frequency and topographic distribution of cerebral microbleeds (CMBs) in dementia with Lewy bodies (DLB) in comparison to CMBs in Alzheimer disease dementia (AD).
Consecutive probable DLB (n= 23) patients who underwent 3-tesla T2* weighted gradient-recalled-echo MRI, and age and gender matched probable Alzheimer’s disease patients (n=46) were compared for the frequency and location of CMBs.
The frequency of one or more CMBs was similar among patients with DLB (30%) and AD (24%). Highest densities of CMBs were found in the occipital lobes of patients with both DLB and AD. Patients with AD had greater densities of CMBs in the temporal lobes and deep or infratentorial regions compared to DLB (p<0.05)
CMBs are as common in patients with DLB as in patients with AD, with highest densities observed in the occipital lobes, suggesting common pathophysiologic mechanisms underlying CMBs in both diseases.
PMCID: PMC4554804  PMID: 26205074
Dementia with Lewy bodies; Cerebral Microbleeds; Alzheimer disease; Cerebral amyloid angiopathy; T2* weighted gradient-recalled-echo MRI
2.  TREM2 p.R47H substitution is not associated with dementia with Lewy bodies 
Neurology: Genetics  2016;2(4):e85.
Dementia with Lewy bodies (DLB) is the second leading cause of neurodegenerative dementia in the elderly and is clinically characterized by the presence of cognitive decline, parkinsonism, REM sleep behavior disorder, and visual hallucinations.1,2 At autopsy, α-synuclein–positive Lewy-related pathology is observed throughout the brain. Concomitant Alzheimer disease–related pathology including amyloid plaques and, to a lesser degree, neurofibrillary tangles are often present.2 The clinical characteristics of DLB share overlapping features with Alzheimer disease dementia (AD) and Parkinson disease (PD). A recent genetic association study examining known hits from PD and AD identified variants at both the α-synuclein (SNCA) and APOE loci as influencing the individual risk to DLB.3 These findings would suggest that DLB may be a distinct disease with shared genetic risk factors with PD and AD.
PMCID: PMC4946771  PMID: 27458607
3.  A patient-centered analysis of enrollment and retention in a randomized behavioral trial of two cognitive rehabilitation interventions for Mild Cognitive Impairment 
A major potential barrier for studying behavioral interventions for patients with Mild Cognitive Impairment (MCI) is the willingness and ability of people to enroll in and adhere to behavioral interventions, especially when the intervention involves dyads of patients with MCI and support partners. Details regarding recruitment strategies and processes (such as number of dyads screened) are often missing from reports of behavioral trials. In addition, reports do not detail the reasons a potentially eligible candidate opts out of participation in a research study.
To describe the challenges and successes of enrollment and retention in a behavioral trial for persons with MCI and their care partners, and to better understand barriers to participation from the patient’s point of view.
Multi-site, randomized trial
Major medical centers
Our accrual target for the study was 60 participants. Potential candidates were patients presenting to memory evaluation clinics whose resulting clinical diagnosis was MCI. A total of 200 consecutive potential candidates were approached about participating in the study across the three sites.
Detailed recruitment and retention data of a randomized trial comparing two behavioral interventions (memory notebook training versus computer training) provided in two separate training time frames (10 days versus 6 weeks).
Structured interview with those declining to participate in the trial.
Overall recruitment 37% with a range of 13%–72% across sites. Overall retention 86% with a range of 74%–94% across sites.
The primary barriers to enrollment from the patient’s perspective were distance to the treatment center and competing comprehensive behavioral programming. However, retention data suggest that those dyads who enroll in behavioral programs are highly committed.
PMCID: PMC4936534  PMID: 27398353
MCI; behavioral intervention; recruitment; retention
4.  White matter integrity in dementia with Lewy bodies: A Voxel-Based Analysis of Diffusion Tensor Imaging 
Neurobiology of aging  2015;36(6):2010-2017.
Many patients with dementia with Lewy bodies have overlapping Alzheimer's disease (AD)–related pathology, which may contribute to white matter (WM) diffusivity alterations on diffusion tensor imaging (DTI). Consecutive patients with DLB (n=30), age and sex matched AD patients (n=30), and cognitively normal controls (CN; n=60) were recruited. All subjects underwent DTI, 18F 2-fluoro-deoxy-d-glucose (FDG) and 11C Pittsburgh compound B (PiB) PET scans. DLB patients had reduced fractional anisotropy (FA) in the parieto-occipital WM but not elsewhere compared to CN, and elevated FA in parahippocampal WM compared to AD patients, which persisted after controlling for Aβ load in DLB. The pattern of WM FA alterations on DTI was consistent with the more diffuse posterior parietal and occipital glucose hypometabolism of FDG PET in the cortex. DLB is characterized by a loss of parieto-occipital WM integrity, independent of concomitant AD-related Aβ load. Cortical glucose hypometabolism accompanies WM FA alterations with a concordant pattern of gray and white matter involvement in the parieto-occipital lobes in DLB.
PMCID: PMC4433563  PMID: 25863527
dementia with Lewy bodies; diffusion tensor imaging; white matter integrity; amyloid-beta load; voxel-based analysis; cortical hypometabolism
5.  A Cognitive Training Program Based on Principles of Brain Plasticity: Results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) Study 
To investigate the efficacy of a novel brain plasticity–based computerized cognitive training program in older adults and to evaluate the effect on untrained measures of memory and attention and participant-reported outcomes.
Multisite randomized controlled double-blind trial with two treatment groups.
Communities in northern and southern California and Minnesota.
Community-dwelling adults aged 65 and older (N = 487) without a diagnosis of clinically significant cognitive impairment.
Participants were randomized to receive a broadly-available brain plasticity–based computerized cognitive training program (intervention) or a novelty- and intensity-matched general cognitive stimulation program modeling treatment as usual (active control). Duration of training was 1 hour per day, 5 days per week, for 8 weeks, for a total of 40 hours.
The primary outcome was a composite score calculated from six subtests of the Repeatable Battery for the Assessment of Neuropsychological Status that use the auditory modality (RBANS Auditory Memory/Attention). Secondary measures were derived from performance on the experimental program, standardized neuropsychological assessments of memory and attention, and participant-reported outcomes.
RBANS Auditory Memory/Attention improvement was significantly greater (P = .02) in the experimental group (3.9 points, 95% confidence interval (CI) = 2.7–5.1) than in the control group (1.8 points, 95% CI = 0.6–3.0). Multiple secondary measures of memory and attention showed significantly greater improvements in the experimental group (word list total score, word list delayed recall, digits backwards, letter–number sequencing; P < .05), as did the participant-reported outcome measure (P = .001). No advantage for the experimental group was seen in narrative memory.
The experimental program improved generalized measures of memory and attention more than an active control program.
PMCID: PMC4169294  PMID: 19220558
clinical trial; cognitive decline; computerized cognitive training; participant-reported outcomes; brain plasticity
6.  MRS in Mild Cognitive Impairment: Early Differentiation of Dementia with Lewy Bodies and Alzheimer's Disease 
Background and Purpose
Mild cognitive impairment (MCI) precedes both Alzheimer's disease (AD) dementia and with Lewy bodies (DLB). We investigated proton magnetic resonance spectroscopy (MRS) characteristics of MCI patients who progressed to DLB compared to those who progressed to AD dementia or remained stable.
Consecutive MCI patients who underwent single voxel MRS at baseline and progressed to DLB (n=10) were identified during a median follow-up period of 18 months. From the same cohort, we identified age- and sex-matched MCI patients who progressed to AD dementia (n=27) or remained stable (n=20) during a similar follow-up period. This study was approved by the Institutional Review Board and informed consent was from every subject.
MCI patients who progressed to AD dementia were characterized by lower N-acetylaspartate (NAA)/Cr ratio in the posterior cingulate voxel compared to those who progressed to DLB (p=0.001). Decreased NAA/Cr in the posterior cingulate voxel differentiated MCI patients who progressed to DLB from those who progressed to AD with an area under the receiver operating characteristic curve of 0.85 (p<0.001) on logistic regression analysis.
MRS may be useful in differentiating MCI patients with prodromal AD dementia from those with prodromal DLB for early disease-specific interventions.
PMCID: PMC4295004  PMID: 25039916
Magnetic resonance spectroscopy (MRS); mild cognitive impairment (MCI); dementia with Lewy Bodies (DLB); Alzheimer's disease; MRI
7.  What is the quality of life in the oldest old? 
International psychogeriatrics / IPA  2011;23(6):1003-1010.
Maintaining and improving quality of life has become a major focus in geriatric medicine, but the oldest old have received limited attention in clinical investigations. We aimed to investigate the relationship between self-perceived and caregiver-perceived quality of life (QOL), cognitive functioning, and depressive symptoms in the oldest old.
This IRB-approved prospective study recruited community dwellers aged 90–99 years old. Collected data included neurological evaluation, DSM III-R criteria for dementia, Mini-Mental State Examination (MMSE), Dementia Rating Scale (DRS), Geriatric Depression Scale (GDS), Record of Independent Living (ROIL), and QOL assessment using the Linear Analogue Self Assessment (LASA).
Data on 144 subjects (56 cognitively normal (normal), 13 mild cognitive impairment (MCI), 41 dementia (DEM), 34 dementia with stroke and parkinsonism (DEMSP)) over a three-year period were analyzed. Mean ages ranged from 93 to 94 years, and the majority were female with at least high school education. Overall functional ability was higher in groups without dementia (p < 0.0001). All subjects reported high overall QOL (range 6.76–8.3 out of 10), regardless of cognitive functioning. However, caregivers perceived the subjects’ overall QOL to be lower with increasing severity of cognitive impairment (p < 0.0001). Lower GDS scores correlate with higher self-perceived overall QOL (ρ = −0.38, p < 0.0001).
In our community sample of the oldest old, there was a fairly high level of overall QOL, whether or not cognitive impairment exists. Individuals perceive their QOL better than caregivers do, and the difference in subjects’ and caregivers’ perception is more pronounced for the groups with dementia. QOL is more strongly correlated with depressive symptoms than with dementia severity.
PMCID: PMC3924179  PMID: 21281556
geriatric; well being; cognition; depression; dementia; stroke; parkinsonism; MCI
8.  Pattern of Brain Atrophy Rates in Autopsy-Confirmed Dementia with Lewy Bodies 
Neurobiology of aging  2014;36(1):452-461.
Dementia with Lewy bodies (DLB) is characterized by preserved whole brain and medial temporal lobe volumes compared to Alzheimer’s disease dementia (AD) on MRI. However, frequently coexistent AD-type pathology may influence the pattern of regional brain atrophy rates in DLB patients. We investigated the pattern and magnitude of the atrophy rates from two serial MRIs in autopsy-confirmed DLB (n=20) and mixed DLB/AD patients (n=22), compared to AD (n=30) and elderly non-demented controls (n=15), followed antemortem. DLB patients without significant AD-type pathology were characterized by lower global and regional rates of atrophy, similar to controls. The mixed DLB/AD patients displayed greater rates in the whole brain, temporo-parietal cortices, hippocampus and amygdala, and ventricle expansion, similar to AD patients. In the DLB and DLB/AD patients, the atrophy rates correlated with Braak neurofibrillary tangle stage, cognitive decline and progression of motor symptoms. Global and regional atrophy rates are associated with AD-type pathology in DLB, and can be used as biomarkers of AD progression in patients with LB pathology.
PMCID: PMC4268128  PMID: 25128280
autopsy-confirmed dementia with Lewy bodies; Alzheimer’s disease; serial MRI; atrophy rate; Braak neurofibrillary tangle stage; sample size estimate
9.  Late-Onset Alzheimer Risk Variants in Memory Decline, Incident Mild Cognitive Impairment and Alzheimer Disease 
Neurobiology of aging  2014;36(1):60-67.
Genome-wide association studies (GWAS) of late-onset Alzheimer's disease (LOAD) identified risk variants. We assessed the association of nine variants with memory and progression to mild cognitive impairment (MCI) or LOAD (MCI/LOAD).
Older Caucasians, cognitively normal at baseline and longitudinally evaluated at Mayo Clinic Rochester and Jacksonville, were assessed for associations of genetic variants with memory decline (n=2,262) using linear mixed models and for incident MCI/LOAD (n=2,674) with Cox proportional hazards models. Each variant was tested both individually and collectively using a single weighted risk score.
APOE-ε4 was significantly associated with worse memory at baseline (β=-0.88, p=2.78E-03) and increased rate of 5-year decline (β=-1.43, p=3.71E-06) with highly significant overall effect on memory (p=3.88E-09). CLU-locus risk allele rs11136000-G was associated with worse memory at baseline (β=-0.51, p=0.012), but not with increased rate of decline. CLU allele was also associated with incident MCI/LOAD (hazard ratio=HR=1.14, p=0.049) in sensitivity analysis. MS4A6A-locus risk allele rs610932-C was associated with increased incident MCI/LOAD in primary analysis (HR=1.17, p=0.016) and had suggestive association with lower baseline memory (β=-0.35, p=0.08). PICALM-locus risk allele rs3851179-G had nominally significant HR in both primary and sensitivity analysis, but with a protective estimate. LOAD risk alleles ABCA7-rs3764650-C and EPHA1-rs11767557-A associated with increased rates of memory decline in the subset of subjects with a final diagnosis of MCI/LOAD. Risk scores excluding APOE were not significant, whereas APOE-inclusive risk scores associated with worse memory and incident MCI/LOAD.
The collective influence of the nine top LOAD GWAS variants on memory decline and progression to MCI/LOAD appears limited. Given the significant associations observed with APOE-ε4, discovery of the biologically functional variants at these loci may uncover stronger effects on memory and incident disease.
PMCID: PMC4268433  PMID: 25189118
Alzheimer's disease; memory; mild cognitive impairment; genetic risk; association; cognitive decline
10.  Dementia with Lewy bodies 
Neurology  2014;83(9):801-809.
To investigate clinical, imaging, and pathologic associations of the cingulate island sign (CIS) in dementia with Lewy bodies (DLB).
We retrospectively identified and compared patients with a clinical diagnosis of DLB (n = 39); patients with Alzheimer disease (AD) matched by age, sex, and education (n = 39); and cognitively normal controls (n = 78) who underwent 18F-fluorodeoxyglucose (FDG) and C11 Pittsburgh compound B (PiB)-PET scans. Among these patients, we studied those who came to autopsy and underwent Braak neurofibrillary tangle (NFT) staging (n = 10).
Patients with a clinical diagnosis of DLB had a higher ratio of posterior cingulate to precuneus plus cuneus metabolism, cingulate island sign (CIS), on FDG-PET than patients with AD (p < 0.001), a finding independent of β-amyloid load on PiB-PET (p = 0.56). Patients with CIS positivity on visual assessment of FDG-PET fit into the group of high- or intermediate-probability DLB pathology and received clinical diagnosis of DLB, not AD. Higher CIS ratio correlated with lower Braak NFT stage (r = −0.96; p < 0.001).
Our study found that CIS on FDG-PET is not associated with fibrillar β-amyloid deposition but indicates lower Braak NFT stage in patients with DLB. Identifying biomarkers that measure relative contributions of underlying pathologies to dementia is critical as neurotherapeutics move toward targeted treatments.
PMCID: PMC4155048  PMID: 25056580
11.  Regional Proton Magnetic Resonance Spectroscopy Patterns in Dementia with Lewy Bodies 
Neurobiology of aging  2014;35(6):1483-1490.
Magnetic resonance spectroscopy (MRS) characteristics of dementia with Lewy bodies (DLB) Alzheimer’s disease (AD) and cognitively normal controls (CN) were compared. DLB (n=34), AD (n=35) and CN (n=148) participated in a MRS study from frontal, posterior cingulate and occipital voxels. We investigated DLB patients with preserved hippocampal volumes to determine the MRS changes in DLB with low probability of overlapping AD pathology. DLB patients were characterized by decreased NAA/Cr in the occipital voxel. AD patients were characterized by lower NAA/Cr in the frontal and posterior cingulate voxels. Normal NAA/Cr levels in the frontal voxel differentiated DLB patients with preserved hippocampal volumes from AD patients. DLB and AD patients had elevated Cho/Cr and mI/Cr in the posterior cingulate. MRS abnormalities associated with loss of neuronal integrity localized to the occipital lobes in DLB, and the posterior cingulate gyri and frontal lobes in AD. This pattern of MRS abnormalities may have a role in differential diagnosis of DLB and in distinguishing DLB patients with overlapping AD pathology.
PMCID: PMC3961495  PMID: 24468473
Dementia with Lewy Bodies; Magnetic resonance spectroscopy; Alzheimer’s disease
12.  TDP-43 is a key player in the clinical features associated with Alzheimer’s disease 
Acta neuropathologica  2014;127(6):811-824.
The aim of this study was to determine whether the TAR DNA-binding protein of 43kDa (TDP-43) independently has any effect on the clinical and neuroimaging features typically ascribed to Alzheimer’s disease (AD) pathology, and whether TDP-43 pathology could help shed light on the phenomenon of resilient cognition in AD. Three-hundred forty-two subjects pathologically diagnosed with AD were screened for the presence, burden and distribution of TDP-43. All had been classified as cognitively impaired or normal, prior to death. Atlas-based parcellation and voxel-based morphometry were used to assess regional atrophy on MRI. Regression models controlling for age at death, apolipoprotein ε4 and other AD-related pathologies were utilized to explore associations between TDP-43 and cognition or brain atrophy, stratified by Braak stage. Additionally, we determined whether the effects of TDP-43 were mediated by hippocampal sclerosis. One-hundred ninety-five (57%) cases were TDP-positive. After accounting for age, apolipoprotein ε4, and other pathologies, TDP-43 had a strong effect on cognition, memory loss, and medial temporal atrophy in AD. These effects were not mediated by hippocampal sclerosis. TDP-positive subjects were 10× more likely to be cognitively impaired at death compared to TDP-negative subjects. Greater cognitive impairment and medial temporal atrophy were associated with greater TDP-43 burden and more extensive TDP-43 distribution. TDP-43 is an important factor in the manifestation of the clinico-imaging features of AD. TDP-43 also appears to be able to overpower what has been termed resilient brain aging. TDP-43 therefore should be considered a potential therapeutic target for the treatment of AD.
PMCID: PMC4172544  PMID: 24659241
TDP-43; Alzheimer disease; resilience; APOE ε4; Braak stage; MRI
13.  Evaluation of Memory Endophenotypes for Association with CLU, CR1 and PICALM variants in African-American and Caucasian Subjects 
Genetic variants at the CLU, CR1 and PICALM loci associate with risk for late-onset Alzheimer’s disease (LOAD) in genome-wide association studies (GWAS). In this study, our aim was to determine whether the LOAD risk variants at these three loci influence memory endophenotypes in African-American and Caucasian subjects.
We pursued an association study between single nucleotide polymorphism (SNP) genotypes at the CLU, CR1 and PICALM loci and memory endophenotypes. We assessed African-American subjects (AA: 44 with LOAD, 224 controls) recruited at Mayo Clinic Florida and Caucasians recruited at Mayo Clinic Minnesota (RS: 372 with LOAD, 1,690 controls) and Florida (JS: 60 with LOAD, 529 controls). SNPs at the LOAD risk loci CLU (rs11136000), CR1 (rs6656401, rs3818361) and PICALM (rs3851179) were genotyped and tested for association with Logical Memory immediate recall (LMIR), delayed recall (LMDR) and percent retention (LMPR) and Visual Reproduction (VRIR, VRDR, VRPR) scores from Wechsler Memory Scale-Revised, using multivariable linear regression analysis, adjusting for age-at-exam, sex, education and APOE ε4 dosage.
We identified nominally significant or suggestive associations between the LOAD risky CR1 variants and worse LMIR scores in the African-Americans (p=0.068 - 0.046, β= −2.7 to −1.2). The LOAD protective CLU variant is associated with better logical memory endophenotypes in the Caucasian subjects (p=0.099-0.027, β= 0.31 to 0.93). The CR1 associations persisted when the control subjects from the African-American series were assessed separately. The CLU associations appeared to be driven by one of the Caucasian series (RS) and were also observed when the control subset from RS was analyzed.
These results suggest for the first time that LOAD risk variants at CR1 may influence memory endophenotypes in African-Americans. Additionally, CLU LOAD protective variant may confer enhanced memory in Caucasians. Although these results would not remain significant after stringent corrections for multiple testing, they need to be considered in the context of the LOAD associations, with which they have biological consistency. They also provide estimates for effect sizes on memory endophenotypes that could guide future studies. The detection of memory effects for these variants in clinically normal subjects, implies that these LOAD risk loci might modify memory prior to clinical diagnosis of AD.
PMCID: PMC3815516  PMID: 23643458
14.  Abnormal daytime sleepiness in dementia with Lewy bodies compared to Alzheimer’s disease using the Multiple Sleep Latency Test 
Excessive daytime sleepiness is a commonly reported problem in dementia with Lewy bodies (DLB). We examined the relationship between nighttime sleep continuity and the propensity to fall asleep during the day in clinically probable DLB compared to Alzheimer’s disease (AD) dementia.
A full-night polysomnography was carried out in 61 participants with DLB and 26 with AD dementia. Among this group, 32 participants with DLB and 18 with AD dementia underwent a daytime Multiple Sleep Latency Test (MSLT). Neuropathologic examinations of 20 participants with DLB were carried out.
Although nighttime sleep efficiency did not differentiate diagnostic groups, the mean MSLT initial sleep latency was significantly shorter in participants with DLB than in those with AD dementia (mean 6.4 ± 5 minutes vs 11 ± 5 minutes, P <0.01). In the DLB group, 81% fell asleep within 10 minutes compared to 39% of the AD dementia group (P <0.01), and 56% in the DLB group fell asleep within 5 minutes compared to 17% in the AD dementia group (P <0.01). Daytime sleepiness in AD dementia was associated with greater dementia severity, but mean MSLT latency in DLB was not related to dementia severity, sleep efficiency the night before, or to visual hallucinations, fluctuations, parkinsonism or rapid eye movement sleep behavior disorder. These data suggest that abnormal daytime sleepiness is a unique feature of DLB that does not depend on nighttime sleep fragmentation or the presence of the four cardinal DLB features. Of the 20 DLB participants who underwent autopsy, those with transitional Lewy body disease (brainstem and limbic) did not differ from those with added cortical pathology (diffuse Lewy body disease) in dementia severity, DLB core features or sleep variables.
Daytime sleepiness is more likely to occur in persons with DLB than in those with AD dementia. Daytime sleepiness in DLB may be attributed to disrupted brainstem and limbic sleep–wake physiology, and further work is needed to better understand the underlying mechanisms.
PMCID: PMC4266572  PMID: 25512763
15.  Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies 
Neurology  2013;81(23):2032-2038.
To determine the rate of progression of mild cognitive impairment (MCI) to dementia with Lewy bodies (DLB).
We followed 337 patients with MCI in the Mayo Alzheimer's Disease Research Center (range 2–12 years). Competing risks survival models were used to examine the rates of progression to clinically probable DLB and Alzheimer disease (AD). A subset of patients underwent neuropathologic examination.
In this clinical cohort, 116 remained as MCI, while 49 progressed to probable DLB, 162 progressed to clinically probable AD, and 10 progressed to other dementias. Among nonamnestic MCI, progression rate to probable DLB was 20 events per 100 person-years and to probable AD was 1.6 per 100 person-years. Among amnestic MCI, progression rate to probable AD was 17 events per 100 person-years, and to DLB was 1.5 events per 100 person-years. In 88% of those who developed probable DLB, the baseline MCI diagnosis included attention and/or visuospatial deficits. Those who developed probable DLB were more likely to have baseline daytime sleepiness and subtle parkinsonism. In 99% of the clinically probable AD group, the baseline MCI diagnosis included memory impairment. Neuropathologic confirmation was obtained in 24 of 30 of those with clinically probable AD, and in 14 of 18 of those with clinically probable DLB.
In a clinical sample, patients with nonamnestic MCI were more likely to develop DLB, and those with amnestic MCI were more likely to develop probable AD.
PMCID: PMC3854825  PMID: 24212390
16.  Neurocognitive speed associates with frontotemporal lobar degeneration TDP-43 subtypes 
Frontotemporal lobar degeneration (FTLD) is pathologically heterogeneous with TAR DNA binding protein 43 kDa (TDP-43) proteinopathy the most common substrate. Previous work has identified atrophy patterns across TDP-43 subtypes with Type A showing greater frontotemporal and parietal atrophy, Type C predominantly anterior temporal, and Type B predominantly posterior frontal. Despite neuroanatomical correlates of involvement, neuropsychological findings have been inconsistent. The current study utilized broader neurocognitive domains based on aggregated neuropsychological measures to distinguish between subtypes. We hypothesized that patterns of neurocognitive domain impairments would predict FTLD–TDP-43 subtype. Fifty-one patients, aged 38–87, were identified post mortem with pathologically confirmed FTLD with TDP-43. Participants were classified into subtypes A, B, or C. Patients had completed neuropsychological assessments as part of their clinical evaluation. Six cognitive domains were created: Language; Cognitive Speed; Memory; Learning; Visuoperception; and Fluency. Binary logistic regression was conducted. All but three patients could be classified as FTLD–TDP Types A, B, or C: 26 as Type A; nine as Type B; and 13 as Type C. Cognitive Speed scores were associated with Types A and C (p < 0.001 and p = 0.003, respectively). Impaired performances on the Trail Making Test differentiated Types A and C. Worse Boston Naming Test and Logical Memory (Immediate) (p < 0.05) scores also increased the likelihood of Type C phenotype. Findings suggest Cognitive Speed associates with TDP-43 subtypes. Type C also demonstrated language-specific involvement. Differences between TDP-43 subtypes further supports the notion of differences in pathophysiology or topography across these types.
PMCID: PMC3825760  PMID: 24012243
Cognitive speed; Dementia; Frontotemporal lobar degeneration; Neuropathology; Neuropsychology; TDP-43
17.  MRI and pathology of REM sleep behavior disorder in dementia with Lewy bodies 
Neurology  2013;81(19):1681-1689.
To determine structural MRI and digital microscopic characteristics of REM sleep behavior disorder in individuals with low-, intermediate-, and high-likelihood dementia with Lewy bodies (DLB) at autopsy.
Patients with autopsy-confirmed low-, intermediate-, and high-likelihood DLB, according to the probability statement recommended by the third report of the DLB Consortium, and antemortem MRI, were identified (n = 75). The clinical history was assessed for presence (n = 35) and absence (n = 40) of probable REM sleep behavior disorder (pRBD), and patients' antemortem MRIs were compared using voxel-based morphometry. Pathologic burdens of phospho-tau, β-amyloid, and α-synuclein were measured in regions associated with early neuropathologic involvement, the hippocampus and amygdala.
pRBD was present in 21 patients (60%) with high-likelihood, 12 patients (34%) with intermediate-likelihood, and 2 patients (6%) with low-likelihood DLB. Patients with pRBD were younger, more likely to be male (p ≤ 0.001), and had a more frequent neuropathologic diagnosis of diffuse (neocortical) Lewy body disease. In the hippocampus and amygdala, phospho-tau and β-amyloid burden were lower in patients with pRBD compared with those without pRBD (p < 0.01). α-Synuclein burden did not differ in the hippocampus, but trended in the amygdala. Patients without pRBD had greater atrophy of temporoparietal cortices, hippocampus, and amygdala (p < 0.001) than those with pRBD; atrophy of the hippocampus (p = 0.005) and amygdala (p = 0.02) were associated with greater phospho-tau burdens in these regions.
Presence of pRBD is associated with a higher likelihood of DLB and less severe Alzheimer-related pathology in the medial temporal lobes, whereas absence of pRBD is characterized by Alzheimer-like atrophy patterns on MRI and increased phospho-tau burden.
PMCID: PMC3812105  PMID: 24107861
18.  Dissociable executive functions in behavioral variant frontotemporal and Alzheimer dementias 
Neurology  2013;80(24):2180-2185.
The objective of this study was to determine which aspects of executive functions are most affected in behavioral variant frontotemporal dementia (bvFTD) and best differentiate this syndrome from Alzheimer disease (AD).
We compared executive functions in 22 patients diagnosed with bvFTD, 26 with AD, and 31 neurologically healthy controls using a conceptually driven and comprehensive battery of executive function tests, the NIH EXAMINER battery (
The bvFTD and the AD patients were similarly impaired compared with controls on tests of working memory, category fluency, and attention, but the patients with bvFTD showed significantly more severe impairments than the patients with AD on tests of letter fluency, antisaccade accuracy, social decision-making, and social behavior. Discriminant function analysis with jackknifed cross-validation classified the bvFTD and AD patient groups with 73% accuracy.
Executive function assessment can support bvFTD diagnosis when measures are carefully selected to emphasize frontally specific functions.
PMCID: PMC3721104  PMID: 23658382
19.  Mild Cognitive Impairment: A Concept and Diagnostic Entity in Need of Input from Neuropsychology 
This virtual issue consists of studies previously published in the Journal of the International Neuropsychological Society and selected on the basis of their content related to one of the most highly researched concepts in behavioral neurology and neuropsychology over the past decade: mild cognitive impairment (MCI). The reliance on cognitive screening measures, staging-based rating scales, and limited neuropsychological testing in diagnosing MCI across most research studies may miss individuals with subtle cognitive declines or mis-diagnose MCI in those who are otherwise cognitively normal on a broader neuropsychological battery of tests. The assembled articles highlight the perils of relying on these conventional criteria for MCI diagnosis and reveal how the reliability of diagnosis is improved when sound neuropsychological approaches are adopted. When these requirements are met, we illustrate with a second series of articles that neuropsychological measures associate strongly with biomarkers and often reflect pathology beyond or instead of typical AD distributions. The final set of articles reveal that people with MCI demonstrate mild but identifiable functional difficulties, and a challenge for neuropsychology is how to incorporate this information to better define MCI and distinguish it from early dementia. Neuropsychology is uniquely positioned to improve upon the state of the science in MCI research and practice by providing critically important empirical information on the specific cognitive domains affected by the predominant neurodegenerative disorders of late life as well as on the diagnostic decision-making strategies used in studies. When such efforts to more comprehensively assess neuropsychological functions are undertaken, better characterizations of spared and impaired cognitive and functional abilities result and lead to more convincing associations with other biomarkers as well as to prediction of clinical outcomes.
PMCID: PMC4039178  PMID: 24490866
Mild cognitive impairment; Alzheimer’s disease; Neuropsychology; Episodic memory; Semantic memory; Executive functions; Neuroimaging; Magnetic resonance imaging; Functional MRI; Diffusion tensor imaging; Cerebrospinal fluid; Biomarkers; Activities of daily living; Functional capacity
20.  Successful Aging: Definitions and Prediction of Longevity and Conversion to Mild Cognitive Impairment 
To examine alternative models of defining and characterizing successful aging.
A retrospective cohort study
Olmsted County, MN.
560 community-dwelling non-demented adults, aged 65 years and older.
Three models were developed. Each model examined subtests in four cognitive domains: memory, attention/executive function, language, and visual-spatial skills. A composite domain score was generated for each of the four domains. In Model 1, a global z-score was further generated from the four cognitive domains, and subjects with mean global z-score in the top 10% were classified as “successful agers” whereas those in the remaining 90% were classified as “typical agers”. In Model 2, subjects with all 4 domain scores above the 50th percentile were classified as “successful agers.” In Model 3, a primary neuropsychological variable was selected from each domain, and subjects whose score remained above minus 1 SD compared to norms for young adults were labeled successful agers. Validation tests were conducted to determine the ability of each model to predict survival and conversion to mild cognitive impairment (MCI).
Model 1 showed 65% lower mortality in successful agers compared to typical agers, and also a 25% lower conversion rate to MCI.
Model 1 was most strongly associated with longevity and cognitive decline; as such, it can be useful in investigating various predictors of successful aging, including plasma level, APOE genotype, and neuroimaging measurements.
PMCID: PMC3918503  PMID: 21606901
successful aging; optimal aging; longevity; cognitive decline
21.  Polysomnographic Findings in Dementia With Lewy Bodies 
The neurologist  2013;19(1):1-6.
The clinical features of dementia with Lewy bodies (DLB) during wakefulness are well known. Other than REM sleep behavior disorder (RBD), only limited data exists on other sleep disturbances and disorders in DLB. We sought to characterize the polysomnographic (PSG) findings in a series of DLB patients with sleep-related complaints.
Retrospective study of patients with DLB who underwent clinical PSG at Mayo Clinic Rochester or Mayo Clinic Jacksonville over an almost 11 year span for evaluation of dream enactment behavior, excessive nocturnal movements, sleep apnea, hypersomnolence, or insomnia. The following variables were analyzed: respiratory disturbance index (RDI) in disordered breathing events/hour, periodic limb movement arousal index (PLMAI), arousals for no apparent reason (AFNAR), total arousal index (TAI), presence of REM sleep without atonia (RSWA), and percent sleep efficiency (SE).
Data on 78 patients (71M, 7F) were analyzed. The mean age was 71 ± 8 years. Seventy-five (96%) patients had histories of recurrent dream enactment during sleep with 83% showing confirmation of RSWA +/- dream enactment during PSG. Mean RDI = 11.9 ± 5.8, PLMAI = 5.9 ± 8.5, AFNARI = 10.7 ± 12.0, and TAI = 26.6 ± 17.4. SE was <80% in 72% of the sample, <70% in 49%, and <60% in 24%. In patients who did not show evidence of significant disordered breathing (23 with RDI<5), 62% of arousals were AFNARs. In those patients who had significant disordered breathing (55 with RDI ≥ 5), 36% of arousals were AFNARs. Six patients underwent evaluations with PSG plus MSLT. Two patients had mean initial sleep latencies less than five minutes, and both had RDI<5. No patient had any sleep onset rapid eye movement periods. Nineteen patients have undergone neuropathologic examination, and 18 have had limbic- or neocortical-predominant Lewy body pathology. One had progressive supranuclear palsy, but no REM sleep was recorded in prior PSG.
In patients with DLB and sleep-related complaints, several sleep disturbances in addition to RBD are frequently present. In this sample, about three quarters had a significant number of arousals not accounted for by a movement or breathing disturbance, and the primary sleep disorders do not appear to entirely account for the poor sleep efficiency in DLB, especially in those without a significant breathing disorder. Further studies are warranted to better understand the relationship between disturbed sleep, arousal and DLB; such characterization may provide insights into potential avenues of treatment of symptoms which could impact quality of life.
PMCID: PMC3587292  PMID: 23269098
Sleep disorders; REM sleep behavior disorder; dementia with Lewy bodies; synucleinopathy
22.  Multimodality Imaging Characteristics of Dementia with Lewy Bodies 
Neurobiology of Aging  2011;33(9):2091-2105.
Dementia with Lewy bodies (DLB) is the second most common cause of neurodegenerative dementia after Alzheimer's disease (AD). Our objective was to determine whether the 11C–Pittsburgh Compound-B (PiB) retention and regional hypometabolism on PET and regional cortical atrophy on MRI are complementary in characterizing patients with DLB and differentiating them from AD. We studied age, gender and education matched patients with a clinical diagnosis of DLB (n=21), AD (n=21), and cognitively normal subjects (n=42). Hippocampal atrophy, global cortical PiB retention and occipital lobe metabolism in combination distinguished DLB from AD better than any of the measurements alone (area under the receiver operating characteristic=0.98).Five of the DLB and AD patients who underwent autopsy were distinguished through multimodality imaging. These data demonstrate that MRI and PiB PET contribute to characterizing the distinct pathological mechanisms in patients with AD compared to DLB. Occipital and posterior parietotemporal lobe hypometabolism is a distinguishing feature of DLB and this regional hypometabolic pattern is independent of the amyloid pathology.
PMCID: PMC3288845  PMID: 22018896
Dementia with Lewy bodies; MRI; PET; FDG; PiB; Alzheimer's disease
23.  Focal atrophy on MRI and neuropathologic classification of dementia with Lewy bodies 
Neurology  2012;79(6):553-560.
To determine the association between the focal atrophy measures on antemortem MRI and postmortem neuropathologic classification of dementia with Lewy bodies (DLB) using the Third Report of the DLB Consortium criteria.
We retrospectively identified 56 subjects who underwent antemortem MRI and had Lewy body (LB) pathology at autopsy. Subjects were pathologically classified as high (n = 25), intermediate (n = 22), and low likelihood DLB (n = 9) according to the Third Report of the DLB Consortium criteria. We included 2 additional pathologic comparison groups without LBs: one with low likelihood Alzheimer disease (AD) (control; n = 27) and one with high likelihood AD (n = 33). The associations between MRI-based volumetric measurements and the pathologic classification of DLB were tested with analysis of covariance by adjusting for age, sex, and MRI-to-death interval.
Antemortem hippocampal and amygdalar volumes increased from low to intermediate to high likelihood DLB (p < 0.001, trend test). Smaller hippocampal and amygdalar volumes were associated with higher Braak neurofibrillary tangle stage (p < 0.001). Antemortem dorsal mesopontine gray matter (GM) atrophy was found in those with high likelihood DLB compared with normal control subjects (p = 0.004) and those with AD (p = 0.01). Dorsal mesopontine GM volume decreased from low to intermediate to high likelihood DLB (p = 0.01, trend test).
Antemortem hippocampal and amygdalar volumes increase and dorsal mesopontine GM volumes decrease in patients with low to high likelihood DLB according to the Third Report of the DLB Consortium criteria. Patients with high likelihood DLB typically have normal hippocampal volumes but have atrophy in the dorsal mesopontine GM nuclei.
PMCID: PMC3413765  PMID: 22843258
24.  Imaging and acetylcholinesterase inhibitor response in dementia with Lewy bodies 
Brain  2012;135(8):2470-2477.
Acetylcholinesterase inhibitors are commonly used to treat patients with dementia with Lewy bodies. Hippocampal atrophy on magnetic resonance imaging and amyloid-β load on positron emission tomography are associated with the Alzheimer’s disease-related pathology in patients with dementia with Lewy bodies. To date, few studies have investigated imaging markers that predict treatment response in patients with dementia with Lewy bodies. Our objective was to determine whether imaging markers of Alzheimer’s disease-related pathology such as hippocampal volume, brain amyloid-β load on 11C Pittsburgh compound B positron emission tomography predict treatment response to acetylcholinesterase inhibitors in patients with dementia with Lewy bodies. We performed a retrospective analysis on consecutive treatment-naive patients with dementia with Lewy bodies (n = 54) from the Mayo Clinic Alzheimer’s Disease Research Centre who subsequently received acetylcholinesterase inhibitors and underwent magnetic resonance imaging with hippocampal volumetry. Baseline and follow-up assessments were obtained with the Mattis Dementia Rating Scale. Subjects were divided into three groups (reliable improvement, stable or reliable decline) using Dementia Rating Scale reliable change indices determined previously. Associations between hippocampal volumes and treatment response were tested with analysis of covariance adjusting for baseline Dementia Rating Scale, age, gender, magnetic resonance field strength and Dementia Rating Scale interval. Seven subjects underwent 11C Pittsburgh compound B imaging within 12 weeks of magnetic resonance imaging. Global cortical 11C Pittsburgh compound B retention (scaled to cerebellar retention) was calculated in these patients. Using a conservative psychometric method of assessing treatment response, there were 12 patients with reliable decline, 29 stable cases and 13 patients with reliable improvement. The improvers had significantly larger hippocampi than those that declined (P = 0.02) and the stable (P = 0.04) group. An exploratory analysis demonstrated larger grey matter volumes in the temporal and parietal lobes in improvers compared with those who declined (P < 0.05). The two patients who had a positive 11C Pittsburgh compound B positron emission tomography scan declined and those who had a negative 11C Pittsburgh compound B positron emission tomography scan improved or were stable after treatment. Patients with dementia with Lewy bodies who do not have the imaging features of coexistent Alzheimer’s disease-related pathology are more likely to cognitively improve with acetylcholinesterase inhibitor treatment.
PMCID: PMC3407425  PMID: 22810436
dementia with Lewy bodies; acetylcholinesterase inhibitors; MRI; PiB; PET; amyloid
25.  Antemortem amyloid imaging and β-amyloid pathology in a case with dementia with Lewy Bodies 
Neurobiology of Aging  2010;33(5):878-885.
The association between antemortem [11C]-Pittsburgh Compound B (PiB) retention and β-amyloid (Aβ) load, Lewy body (LB) and neurofibrillary tangle (NFT) densities were investigated in a pathologically confirmed case of dementia with LB (DLB). 76-year-old man presenting with a clinical diagnosis of DLB had undergone PiB–positron emission tomography (PET), 18F FDG-PET and MRI 18 months before death. The pathologic diagnosis was DLB neocortical-type with low-likelihood of Alzheimer's disease by NIA-Reagan criteria. Sections from regions of interest (ROI) on post-mortem examination were studied. A significant correlation was found between cortical Aβ density and PiB retention in the 17 corresponding ROIs (r=0.899; p<0.0001). Bielschowsky silver stain revealed mostly sparse neocortical neuritic plaques; whereas diffuse plaques were frequent. There was no correlation between LB density and PiB retention (r=0.13; p=0.66); nor between NFT density and PiB retention (r=−0.36; p=0.17). The ROI-based analysis of imaging and histopathological data confirms that PiB uptake on PET is a specific marker for Aβ density, but cannot differentiate neuritic from diffuse amyloid plaques in this case with DLB.
PMCID: PMC3026854  PMID: 20961664
Dementia with Lewy bodies; amyloid imaging; PET; pathology; amyloid

Results 1-25 (65)