PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (69)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
2.  Pattern of Brain Atrophy Rates in Autopsy-Confirmed Dementia with Lewy Bodies 
Neurobiology of aging  2014;36(1):452-461.
Dementia with Lewy bodies (DLB) is characterized by preserved whole brain and medial temporal lobe volumes compared to Alzheimer’s disease dementia (AD) on MRI. However, frequently coexistent AD-type pathology may influence the pattern of regional brain atrophy rates in DLB patients. We investigated the pattern and magnitude of the atrophy rates from two serial MRIs in autopsy-confirmed DLB (n=20) and mixed DLB/AD patients (n=22), compared to AD (n=30) and elderly non-demented controls (n=15), followed antemortem. DLB patients without significant AD-type pathology were characterized by lower global and regional rates of atrophy, similar to controls. The mixed DLB/AD patients displayed greater rates in the whole brain, temporo-parietal cortices, hippocampus and amygdala, and ventricle expansion, similar to AD patients. In the DLB and DLB/AD patients, the atrophy rates correlated with Braak neurofibrillary tangle stage, cognitive decline and progression of motor symptoms. Global and regional atrophy rates are associated with AD-type pathology in DLB, and can be used as biomarkers of AD progression in patients with LB pathology.
doi:10.1016/j.neurobiolaging.2014.07.005
PMCID: PMC4268128  PMID: 25128280
autopsy-confirmed dementia with Lewy bodies; Alzheimer’s disease; serial MRI; atrophy rate; Braak neurofibrillary tangle stage; sample size estimate
3.  Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge 
Neuroimage  2015;123:149-164.
Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated “direct” measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the distribution of atrophy rates in the Alzheimer's disease (AD) and control groups and of required sample sizes to detect a 25% treatment effect, in relation to healthy ageing, with 95% significance and 80% power over follow-up periods of 6, 12, and 24 months. Uncertainty in these estimates, and head-to-head comparisons between techniques, were carried out using the bootstrap. The lateral ventricles provided the most stable measurements, followed by the brain. The hippocampi had much more variability across participants, likely because of differences in segmentation protocol and less distinct boundaries. Most methods showed no indication of bias based on the short-term interval results, and direct measures provided good consistency in terms of symmetry and transitivity. The resulting annualized rates of change derived from the model ranged from, for whole brain: − 1.4% to − 2.2% (AD) and − 0.35% to − 0.67% (control), for ventricles: 4.6% to 10.2% (AD) and 1.2% to 3.4% (control), and for hippocampi: − 1.5% to − 7.0% (AD) and − 0.4% to − 1.4% (control). There were large and statistically significant differences in the sample size requirements between many of the techniques. The lowest sample sizes for each of these structures, for a trial with a 12 month follow-up period, were 242 (95% CI: 154 to 422) for whole brain, 168 (95% CI: 112 to 282) for ventricles, 190 (95% CI: 146 to 268) for left hippocampi, and 158 (95% CI: 116 to 228) for right hippocampi. This analysis represents one of the most extensive statistical comparisons of a large number of different atrophy measurement techniques from around the globe. The challenge data will remain online and publicly available so that other groups can assess their methods.
Highlights
•We compared numerous brain atrophy measurement techniques using multiple metrics.•Each participant produced measures on the exact same dataset, blinded to disease.•A central statistical analysis using linear mixed effect models was performed.•Head to head comparisons for each region were performed using sample size estimates.•Brain and ventricle measures were more consistent across groups than for hippocampi.
doi:10.1016/j.neuroimage.2015.07.087
PMCID: PMC4634338  PMID: 26275383
4.  APOE4 influences β-amyloid burden in primary progressive aphasia and speech apraxia 
Background
Apolipoprotein E epsilon 4 (APOE4) is a risk factor for β-amyloid deposition in Alzheimer’s dementia. Its influence on β-amyloid deposition in speech and language disorders, including primary progressive aphasia (PPA), is unclear.
Methods
One hundred and thirty subjects with PPA or speech apraxia underwent APOE genotyping and Pittsburgh compound B (PiB) PET scanning. The relationship between APOE4 and PiB status, as well as severity and regional distribution of PiB, was assessed.
Results
Forty-five subjects had an APOE4 allele and 60 subjects were PiB-positive. The odds ratio for a subject with APOE4 being PiB-positive compared to a subject without APOE4 being PiB-positive was 10.2 (4.4–25.5, p<0.0001). APOE4 status did not influence regional PiB distribution or severity.
Conclusion
APOE4 increases the risk of β-amyloid deposition in PPA and speech apraxia, but does not influence regional β-amyloid distribution or severity.
doi:10.1016/j.jalz.2014.03.004
PMCID: PMC4254054  PMID: 24985533
Apolipoprotein; Pittsburgh Compound B; primary progressive aphasia; logopenic aphasia; speech apraxia
5.  The evolution of primary progressive apraxia of speech 
Brain  2014;137(10):2783-2795.
Josephs et al. use a multi-modal approach to assess neuroanatomical and clinical changes over time in primary progressive apraxia of speech. They demonstrate that progressive atrophy of cortex, basal ganglia and midbrain accompanies the clinical progression, including the emergence of progressive supranuclear palsy five years post-onset in some subjects.
Primary progressive apraxia of speech is a recently described neurodegenerative disorder in which patients present with an isolated apraxia of speech and show focal degeneration of superior premotor cortex. Little is known about how these individuals progress over time, making it difficult to provide prognostic estimates. Thirteen subjects with primary progressive apraxia of speech underwent two serial comprehensive clinical and neuroimaging evaluations 2.4 years apart [median age of onset = 67 years (range: 49–76), seven females]. All underwent detailed speech and language, neurological and neuropsychological assessments, and magnetic resonance imaging, diffusion tensor imaging and 18F-fluorodeoxyglucose positron emission tomography at both baseline and follow-up. Rates of change of whole brain, ventricle, and midbrain volumes were calculated using the boundary-shift integral and atlas-based parcellation, and rates of regional grey matter atrophy were assessed using tensor-based morphometry. White matter tract degeneration was assessed on diffusion-tensor imaging at each time-point. Patterns of hypometabolism were assessed at the single subject-level. Neuroimaging findings were compared with a cohort of 20 age, gender, and scan-interval matched healthy controls. All subjects developed extrapyramidal signs. In eight subjects the apraxia of speech remained the predominant feature. In the other five there was a striking progression of symptoms that had evolved into a progressive supranuclear palsy-like syndrome; they showed a combination of severe parkinsonism, near mutism, dysphagia with choking, vertical supranuclear gaze palsy or slowing, balance difficulties with falls and urinary incontinence, and one was wheelchair bound. Rates of whole brain atrophy (1.5% per year; controls = 0.4% per year), ventricular expansion (8.0% per year; controls = 3.3% per year) and midbrain atrophy (1.5% per year; controls = 0.1% per year) were elevated (P ≤ 0.001) in all 13, compared to controls. Increased rates of brain atrophy over time were observed throughout the premotor cortex, as well as prefrontal cortex, motor cortex, basal ganglia and midbrain, while white matter tract degeneration spread into the splenium of the corpus callosum and motor cortex white matter. Hypometabolism progressed over time in almost all subjects. These findings demonstrate that some subjects with primary progressive apraxia of speech will rapidly evolve and develop a devastating progressive supranuclear palsy-like syndrome ∼ 5 years after onset, perhaps related to progressive involvement of neocortex, basal ganglia and midbrain. These findings help improve our understanding of primary progressive apraxia of speech and provide some important prognostic guidelines.
doi:10.1093/brain/awu223
PMCID: PMC4229741  PMID: 25113789
non-fluent speech; parkinsonism; progressive supranuclear palsy; disease progression; magnetic resonance imaging
6.  18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons 
Neurobiology of aging  2014;35(9):2096-2106.
Our objective was to examine associations between glucose metabolism, as measured by 18F-fluorodeoxyglucose positron emission tomography (FDG PET), and age and to evaluate the impact of carriage of an apolipoprotein E (APOE) ε4 allele on glucose metabolism and on the associations between glucose metabolism and age. We studied 806 cognitively normal (CN) and 70 amyloid-imaging-positive cognitively impaired participants (35 with mild cognitive impairment and 35 with Alzheimer’s disease [AD] dementia) from the Mayo Clinic Study of Aging, Mayo Alzheimer’s Disease Research Center and an ancillary study who had undergone structural MRI, FDG PET, and 11C-Pittsburgh compound B (PiB) PET. Using partial volume corrected and uncorrected FDG PET glucose uptake ratios, we evaluated associations of regional FDG ratios with age and carriage of an APOE ε4 allele in CN participants between the ages of 30 and 95 years, and compared those findings with the cognitively impaired participants. In region-of-interest (ROI) analyses, we found modest but statistically significant declines in FDG ratio in most cortical and subcortical regions as a function of age. We also found a main effect of APOE ε4 genotype on FDG ratio, with greater uptake in ε4 noncarriers compared with carriers but only in the posterior cingulate and/or precuneus, lateral parietal, and AD-signature meta-ROI. The latter consisted of voxels from posterior cingulate and/or precuneus, lateral parietal, and inferior temporal. In age- and sex-matched CN participants the magnitude of the difference in partial volume corrected FDG ratio in the AD-signature meta-ROI for APOE ε4 carriers compared with noncarriers was about 4 times smaller than the magnitude of the difference between age- and sex-matched elderly APOE ε4 carrier CN compared with AD dementia participants. In an analysis in participants older than 70 years (31.3% of whom had elevated PiB), there was no interaction between PiB status and APOE ε4 genotype with respect to glucose metabolism. Glucose metabolism declines with age in many brain regions. Carriage of an APOE ε4 allele was associated with reductions in FDG ratio in the posterior cingulate and/or precuneus, lateral parietal, and AD-signature ROIs, and there was no interaction between age and APOE ε4 status. The posterior cingulate and/or precuneus and lateral parietal regions have a unique vulnerability to reductions in glucose metabolic rate as a function both of age and carriage of an APOE ε4 allele.
doi:10.1016/j.neurobiolaging.2014.03.006
PMCID: PMC4053507  PMID: 24702820
Aging; Alzheimer’s disease; FDG positron emission tomography; Apolipoprotein E
7.  Age-specific population frequencies of amyloidosis and neurodegeneration among cognitively normal people age 50-89 years: a cross-sectional study 
The Lancet. Neurology  2014;13(10):997-1005.
Summary
Background
As treatment of pre-clinical Alzheimer's disease (AD) becomes a focus of therapeutic intervention, observational research studies should recognize the overlap between imaging abnormalities associated with typical aging vs those associated with AD. Our objective was to characterize how typical aging and pre-clinical AD blend together with advancing age in terms of neurodegeneration and b-amyloidosis.
Methods
We measured age-specific frequencies of amyloidosis and neurodegeneration in 985 cognitively normal subjects age 50 to 89 from a population-based study of cognitive aging. Potential participants were randomly selected from the Olmsted County, Minnesota population by age- and sex-stratification and invited to participate in cognitive evaluations and undergo multimodality imaging. To be eligible for inclusion, subjects must have been judged clinically to have no cognitive impairment and have undergone amyloid PET, FDG PET and MRI. Imaging studies were obtained from March 2006 to December 2013. Amyloid positive/negative status (A+/A−) was determined by amyloid PET using Pittsburgh Compound B. Neurodegeneration positive/negative status (N+/N−) was determined by an AD-signature FDG PET measure and/or hippocampal volume on MRI. We labeled subjects positive or negative for neurodegeneration (FDG PET or MRI) or amyloidosis by using cutpoints defined such that 90% of 75 clinically diagnosed AD dementia subjects were categorized as abnormal. APOE genotype was assessed using DNA extracted from blood. Every individual was assigned to one of four groups: A−N−, A+N−, A−N+, or A+N+. Age specific frequencies of the 4 A/N groups were determined cross-sectionally using multinomial regression models. Associations with APOE ε4 and sex effects were evaluated by including these covariates in the multinomial models.
Findings
The population frequency of A−N− was 100% (n=985) at age 50 and declined thereafter. The frequency of A+N− increased to a maximum of 28% (95% CI, 24%-32%) at age 74 then decreased to 17% (95% CI, 11%-25%) by age 89. A−N+ increased from age 60 onward reaching a frequency of 24% (95% CI, 16%-34%) by age 89. A+N+ increased from age 65 onward reaching a frequency of 42% (95% CI, 31%-52%) by age 89. A+N− and A+N+ were more frequent in APOE ε4 carriers. A+N+ was more, and A+N− less frequent in men.
Interpretation
Accumulation of A/N imaging abnormalities is nearly inevitable by old age yet people are able to remain cognitively normal despite these abnormalities. . The multinomial models suggest the A/N frequency trends by age are modified by APOE ε4 , which increases risk for amyloidosis, and male sex, which increases risk for neurodegeneration. Changing A/N frequencies with age suggest that individuals may follow different pathophysiological sequences.
Funding
National Institute on Aging; Alexander Family Professorship of Alzheimer's Disease Research.
doi:10.1016/S1474-4422(14)70194-2
PMCID: PMC4324499  PMID: 25201514
Cognitive aging; Brain aging; Amyloid imaging; Alzheimer disease; Brain atrophy and Alzheimer disease; FDG PET and Alzheimer disease
8.  Dementia with Lewy bodies 
Neurology  2014;83(9):801-809.
Objectives:
To investigate clinical, imaging, and pathologic associations of the cingulate island sign (CIS) in dementia with Lewy bodies (DLB).
Methods:
We retrospectively identified and compared patients with a clinical diagnosis of DLB (n = 39); patients with Alzheimer disease (AD) matched by age, sex, and education (n = 39); and cognitively normal controls (n = 78) who underwent 18F-fluorodeoxyglucose (FDG) and C11 Pittsburgh compound B (PiB)-PET scans. Among these patients, we studied those who came to autopsy and underwent Braak neurofibrillary tangle (NFT) staging (n = 10).
Results:
Patients with a clinical diagnosis of DLB had a higher ratio of posterior cingulate to precuneus plus cuneus metabolism, cingulate island sign (CIS), on FDG-PET than patients with AD (p < 0.001), a finding independent of β-amyloid load on PiB-PET (p = 0.56). Patients with CIS positivity on visual assessment of FDG-PET fit into the group of high- or intermediate-probability DLB pathology and received clinical diagnosis of DLB, not AD. Higher CIS ratio correlated with lower Braak NFT stage (r = −0.96; p < 0.001).
Conclusions:
Our study found that CIS on FDG-PET is not associated with fibrillar β-amyloid deposition but indicates lower Braak NFT stage in patients with DLB. Identifying biomarkers that measure relative contributions of underlying pathologies to dementia is critical as neurotherapeutics move toward targeted treatments.
doi:10.1212/WNL.0000000000000734
PMCID: PMC4155048  PMID: 25056580
9.  Amyloid Burden Correlates with Cognitive Decline in Alzheimer’s Disease Presenting with Aphasia 
Background
A subset of patients with Alzheimer’s disease (AD) present with early and prominent language deficits. It is unclear whether the burden of underlying β-amyloid pathology is associated with language or general cognitive impairment in these subjects.
Methods
Here, we assess the relationship between cortical β-amyloid burden on [11C]Pittsburgh compound B (PiB) PET and performance on the Montreal Cognitive Assessment (MoCA), the Wechsler Memory Scale-Third Edition (WMS-III), the Boston Naming Test (BNT), and the Western Aphasia Battery (WAB) using regression and correlation analyses in subjects presenting with aphasia that showed β-amyloid deposition on PiB PET.
Results
The global PiB ratio was inversely correlated with MoCA (p = 0.02) and the WMS-III Visual Reproduction (VR) subtest (VR I, p = 0.02; VR II, p = 0.04). However, the correlations between PiB ratio, BNT (p = 0.13), WAB aphasia quotient (p = 0.11), and WAB repetition scores (p = 0.34) were not significant.
Conclusion
This study demonstrates that an increased cortical β-amyloid burden is associated with cognitive impairment, but not language deficits, in AD subjects presenting with aphasia. The results suggest that β-amyloid deposition may partly contribute to impaired cognition in such patients while language dysfunction may be influenced by other pathologic mechanisms, perhaps downstream pathways of β-amyloid deposition.
doi:10.1111/ene.12331
PMCID: PMC4057296  PMID: 24330306
Dementia; Aphasia; PET; Beta-amyloid; PiB
10.  Accelerated vs. unaccelerated serial MRI based TBM-SyN measurements for Clinical Trials in Alzheimer’s disease 
NeuroImage  2015;113:61-69.
Objective
Our primary objective was to compare the performance of unaccelerated vs. accelerated structural MRI for measuring disease progression using serial scans in Alzheimer’s disease (AD).
Methods
We identified cognitively normal (CN), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI) and AD subjects from all available Alzheimer’s Disease Neuroimaging Initiative (ADNI) subjects with usable pairs of accelerated and unaccelerated scans. There were a total of 696 subjects with baseline and 3 month scans, 628 subjects with baseline and 6 month scans and 464 subjects with baseline and 12 month scans available. We employed the Symmetric Diffeomorphic Image Normalization method (SyN) for normalization of the serial scans to obtain Tensor Based Morphometry (TBM) maps which indicate the structural changes between pairs of scans. We computed a TBM-SyN summary score of annualized structural changes over 31 regions of interest (ROIs) that are characteristically affected in AD. TBM-SyN scores were computed using accelerated and unaccelerated scan pairs and compared in terms of agreement, group-wise discrimination, and sample size estimates for a hypothetical therapeutic trial.
Results
We observed a number of systematic differences between TBM-SyN scores computed from accelerated and unaccelerated pairs of scans. TBM-SyN scores computed from accelerated scans tended to have overall higher estimated values than those from unaccelerated scans. However, the performance of accelerated scans was comparable to unaccelerated scans in terms of discrimination between clinical groups and sample sizes required in each clinical group for a therapeutic trial. We also found that the quality of both accelerated vs. unaccelerated scans were similar.
Conclusions
Accelerated scanning protocols reduce scan time considerably. Their group-wise discrimination and sample size estimates were comparable to those obtained with unaccelerated scans. The two protocols did not produce interchangeable TBM-SyN estimates, so it is arguably important to use either accelerated pairs of scans or unaccelerated pairs of scans throughout the study duration.
doi:10.1016/j.neuroimage.2015.03.026
PMCID: PMC4456670  PMID: 25797830
11.  Antemortem MRI findings associated with microinfarcts at autopsy 
Neurology  2014;82(22):1951-1958.
Objective:
To determine antemortem MRI findings associated with microinfarcts at autopsy.
Methods:
Patients with microinfarcts (n = 22) and patients without microinfarcts (n = 44) who underwent antemortem MRI were identified from a dementia clinic–based, population–based, and community clinic–based autopsy cohort. The microinfarct and no-microinfarct groups were matched on age at MRI, age at death, sex, APOE status, Mini-Mental State Examination score, and pathologic diagnosis of Alzheimer disease. Brain infarcts were assessed on fluid-attenuated inversion recovery (FLAIR) MRI. White matter hyperintensities on FLAIR MRI and hippocampal volumes on T1-weighted MRI were quantified using automated methods. A subset of subjects with microinfarcts (n = 15) and a matched group of subjects without microinfarcts (n = 15) had serial T1-weighted MRIs and were included in an analysis of global and regional brain atrophy rates using automated methods.
Results:
The presence of cortical (p = 0.03) and subcortical (p = 0.02) infarcts on antemortem MRI was associated with presence of microinfarcts at autopsy. Higher numbers of cortical (p = 0.05) and subcortical (p = 0.03) infarcts on antemortem MRI were also associated with presence of microinfarcts. Presence of microinfarcts was not associated with white matter hyperintensities and cross-sectional hippocampal volume on antemortem MRI. Whole-brain and regional precuneus, motor, and somatosensory atrophy rates were higher in subjects with microinfarcts compared to subjects without microinfarcts.
Conclusions:
Microinfarcts increase brain atrophy rates independent of Alzheimer disease pathology. Association between microinfarct pathology and macroinfarcts on MRI suggests either common risk factors or a shared pathophysiology and potentially common preventive targets.
doi:10.1212/WNL.0000000000000471
PMCID: PMC4105260  PMID: 24793188
12.  Association of hypometabolism and amyloid levels in aging, normal subjects 
Neurology  2014;82(22):1959-1967.
Objective:
We evaluated the relationship of amyloid, seen on Pittsburgh compound B (PiB)-PET, and metabolism, seen on [18F]-fluorodeoxyglucose (FDG)-PET, in normal subjects to better understand pathogenesis and biomarker selection in presymptomatic subjects.
Methods:
Normal participants (aged 70–95 years; 600 with PiB-PET, FDG-PET, and MRI) were included. We performed a cross-sectional evaluation and subcategorized participants into amyloid-negative (<1.4), high-normal (1.4–1.5), positive (1.5–2.0), and markedly positive (>2.0) PiB standardized uptake value ratio groups representing different levels of amyloid brain load. Associations with metabolism were assessed in each group. Relationships with APOE ε4 carriage were evaluated.
Results:
Hypometabolism in “Alzheimer disease (AD)-signature” regions was strongly associated with PiB load. Hypometabolism was greater with more positive PiB levels. Additional, more-diffuse cortical hypometabolism was also found to be associated with PiB, although less so. No hypermetabolism was seen in any subset. No significant incremental hypometabolism was seen in APOE-positive vs -negative subjects.
Conclusions:
Hypometabolism in PiB-positive, cognitively normal subjects in a population-based cohort occurs in AD-signature cortical regions and to a lesser extent in other cortical regions. It is more pronounced with higher amyloid load and supports a dose-dependent association. The effect of APOE ε4 carriage in this group of subjects does not appear to modify their hypometabolic “AD-like” neurodegeneration. Consideration of hypometabolism associated with amyloid load may aid trials of AD drug therapy.
doi:10.1212/WNL.0000000000000467
PMCID: PMC4105262  PMID: 24793183
13.  Regional Proton Magnetic Resonance Spectroscopy Patterns in Dementia with Lewy Bodies 
Neurobiology of aging  2014;35(6):1483-1490.
Magnetic resonance spectroscopy (MRS) characteristics of dementia with Lewy bodies (DLB) Alzheimer’s disease (AD) and cognitively normal controls (CN) were compared. DLB (n=34), AD (n=35) and CN (n=148) participated in a MRS study from frontal, posterior cingulate and occipital voxels. We investigated DLB patients with preserved hippocampal volumes to determine the MRS changes in DLB with low probability of overlapping AD pathology. DLB patients were characterized by decreased NAA/Cr in the occipital voxel. AD patients were characterized by lower NAA/Cr in the frontal and posterior cingulate voxels. Normal NAA/Cr levels in the frontal voxel differentiated DLB patients with preserved hippocampal volumes from AD patients. DLB and AD patients had elevated Cho/Cr and mI/Cr in the posterior cingulate. MRS abnormalities associated with loss of neuronal integrity localized to the occipital lobes in DLB, and the posterior cingulate gyri and frontal lobes in AD. This pattern of MRS abnormalities may have a role in differential diagnosis of DLB and in distinguishing DLB patients with overlapping AD pathology.
doi:10.1016/j.neurobiolaging.2014.01.001
PMCID: PMC3961495  PMID: 24468473
Dementia with Lewy Bodies; Magnetic resonance spectroscopy; Alzheimer’s disease
14.  TDP-43 is a key player in the clinical features associated with Alzheimer’s disease 
Acta neuropathologica  2014;127(6):811-824.
The aim of this study was to determine whether the TAR DNA-binding protein of 43kDa (TDP-43) independently has any effect on the clinical and neuroimaging features typically ascribed to Alzheimer’s disease (AD) pathology, and whether TDP-43 pathology could help shed light on the phenomenon of resilient cognition in AD. Three-hundred forty-two subjects pathologically diagnosed with AD were screened for the presence, burden and distribution of TDP-43. All had been classified as cognitively impaired or normal, prior to death. Atlas-based parcellation and voxel-based morphometry were used to assess regional atrophy on MRI. Regression models controlling for age at death, apolipoprotein ε4 and other AD-related pathologies were utilized to explore associations between TDP-43 and cognition or brain atrophy, stratified by Braak stage. Additionally, we determined whether the effects of TDP-43 were mediated by hippocampal sclerosis. One-hundred ninety-five (57%) cases were TDP-positive. After accounting for age, apolipoprotein ε4, and other pathologies, TDP-43 had a strong effect on cognition, memory loss, and medial temporal atrophy in AD. These effects were not mediated by hippocampal sclerosis. TDP-positive subjects were 10× more likely to be cognitively impaired at death compared to TDP-negative subjects. Greater cognitive impairment and medial temporal atrophy were associated with greater TDP-43 burden and more extensive TDP-43 distribution. TDP-43 is an important factor in the manifestation of the clinico-imaging features of AD. TDP-43 also appears to be able to overpower what has been termed resilient brain aging. TDP-43 therefore should be considered a potential therapeutic target for the treatment of AD.
doi:10.1007/s00401-014-1269-z
PMCID: PMC4172544  PMID: 24659241
TDP-43; Alzheimer disease; resilience; APOE ε4; Braak stage; MRI
15.  Association of type 2 diabetes with brain atrophy and cognitive impairment 
Neurology  2014;82(13):1132-1141.
Objective:
We investigated the associations of diabetes and hypertension with imaging biomarkers (markers of neuronal injury and ischemic damage) and with cognition in a population-based cohort without dementia.
Methods:
Participants (n = 1,437, median age 80 years) were evaluated by a nurse and physician and underwent neuropsychological testing. A diagnosis of cognitively normal, mild cognitive impairment (MCI), or dementia was made by an expert panel. Participants underwent MRI to determine cortical and subcortical infarctions, white matter hyperintensity (WMH) volume, hippocampal volume (HV), and whole brain volume (WBV). The medical records were reviewed for diabetes and hypertension in midlife or later.
Results:
Midlife diabetes was associated with subcortical infarctions (odds ratio, 1.85 [95% confidence interval, 1.09–3.15]; p = 0.02), reduced HV (−4% [−7 to −1.0]; p = 0.01), reduced WBV (−2.9% [−4.1 to −1.6]), and prevalent MCI (odds ratio, 2.08; p = 0.01). The association between diabetes and MCI persisted with adjustment for infarctions and WMH volume but was attenuated after adjustment for WBV (1.60 [0.87–2.95]; p = 0.13) and HV (1.82 [1.00–3.32]; p = 0.05). Midlife hypertension was associated with infarctions and WMH volume and was marginally associated with reduced performance in executive function. Effects of late-life onset of diabetes and hypertension were few.
Conclusions:
Midlife onset of diabetes may affect late-life cognition through loss of brain volume. Midlife hypertension may affect executive function through ischemic pathology. Late-life onset of these conditions had fewer effects on brain pathology and cognition.
doi:10.1212/WNL.0000000000000269
PMCID: PMC3966799  PMID: 24647028
16.  Statistical SPECT processing in MRI-negative epilepsy surgery 
Neurology  2014;82(11):932-939.
Objective:
To evaluate the benefit of statistical SPECT processing over traditional subtraction methods, we compared ictal–interictal SPECT analyzed by statistical parametric mapping (SPM) (ISAS), statistical ictal SPECT coregistered to MRI (STATISCOM), and subtraction ictal–interictal SPECT coregistered with MRI (SISCOM) in patients with MRI-negative focal temporal lobe epilepsy (nTLE) and extratemporal lobe epilepsy (nETLE).
Methods:
We retrospectively identified 49 consecutive cases of drug-resistant focal epilepsy that had a negative preoperative MRI and underwent interictal and ictal SPECT prior to resective epilepsy surgery. Interictal and ictal SPECT scans were analyzed using SISCOM, ISAS, and STATISCOM to create hyperperfusion and hypoperfusion maps for each patient. Reviewers blinded to clinical data and the SPECT analysis method marked the site of probable seizure origin and indicated their confidence in the localization.
Results:
In nTLE and nETLE, the hyperperfusions detected by STATISCOM (71% nTLE, 57% nETLE) and ISAS (67% nTLE, 53% nETLE) were more often colocalized with surgery resection site compared to SISCOM (38% nTLE, 36% nETLE). In nTLE, localization of the hyperperfusion to the region of surgery was associated with an excellent outcome for STATISCOM (p = 0.005) and ISAS (p = 0.027), but not in SISCOM (p = 0.071). This association was not present in nETLE for any method.
Conclusion:
In an unselected group of patients with normal MRI and focal epilepsy, SPM-based methods of SPECT processing showed better localization of SPECT hyperperfusion to surgical resection site and higher interobserver agreement compared to SISCOM. These results show the benefit of statistical SPECT processing methods and further highlight the challenge of nETLE.
doi:10.1212/WNL.0000000000000209
PMCID: PMC3963002  PMID: 24532274
17.  Progranulin-associated PiB-negative logopenic primary progressive aphasia 
Journal of neurology  2014;261(3):604-614.
The logopenic variant of primary progressive aphasia (lvPPA) strongly associates with Alzheimer’s disease, but can also associate with frontotemporal lobar degeneration. We aimed to assess the frequency of lvPPA in patients with speech and language disorders without β-amyloid deposition, and to perform detailed neuroimaging and genetic testing in such lvPPA patients. Seventy-six patients with a neurodegenerative speech and language disorder and Pittsburgh compound B (PiB) PET imaging demonstrating no β-amyloid deposition were analyzed. Six lvPPA patients (8 %) were identified. All six underwent progranulin (GRN) gene testing. Structural abnormality index maps and Cortex ID analysis were utilized to assess individual patterns of grey matter atrophy on MRI and hypometabolism on 18-F fluorodeoxyglucose (FDG) PET. Statistical parametric mapping was used to perform MRI and FDG-PET group comparisons between those with (GRN-positive) and without (GRN-negative) progranulin mutations. All six lvPPA patients showed left temporoparietal atrophy and hypometabolism. Three patients (50 %) were GRN-positive. Speech, language, and neurological and neuropsychological profiles did not differ between GRN-positive and negative patients, although GRN-positive patients had family histories, were on average 8 years younger, and had lower PiB-PET ratios. All six patients showed similar patterns of atrophy and hypometabolism, although, as a group, GRN-positive patients had more severe abnormalities, particularly in anteromedial temporal lobes. Logopenic PPA accounts for a small minority of neurodegenerative speech and language disorders not associated with β-amyloid deposition. Identification of such patients, however, should prompt testing for GRN mutations, since GRN-positive patients do not have distinctive features, yet account for 50 % of this patient population.
doi:10.1007/s00415-014-7243-9
PMCID: PMC3961471  PMID: 24449064
Progranulin; Logopenic; Primary progressive aphasia; β-amyloid; MRI; FDG-PET
18.  Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly 
Brain  2015;138(3):761-771.
Vemuri et al. show that amyloid and vascular pathologies are independent processes, and that both are major drivers of cognitive decline in the elderly. Cognitive reserve as measured by educational/occupational level and mid/late-life cognitive activity seems to offset the deleterious effects of both pathologies on cognitive trajectories.
Our primary objective was to investigate a biomarker driven model for the interrelationships between vascular disease pathology, amyloid pathology, and longitudinal cognitive decline in cognitively normal elderly subjects between 70 and 90 years of age. Our secondary objective was to investigate the beneficial effect of cognitive reserve on these interrelationships. We used brain amyloid-β load measured using Pittsburgh compound B positron emission tomography as a marker for amyloid pathology. White matter hyperintensities and brain infarcts were measured using fluid-attenuated inversion recovery magnetic resonance imaging as a marker for vascular pathology. We studied 393 cognitively normal elderly participants in the population-based Mayo Clinic Study of Aging who had a baseline 3 T fluid-attenuated inversion recovery magnetic resonance imaging assessment, Pittsburgh compound B positron emission tomography scan, baseline cognitive assessment, lifestyle measures, and at least one additional clinical follow-up. We classified subjects as being on the amyloid pathway if they had a global cortical amyloid-β load of ≥1.5 standard uptake value ratio and those on the vascular pathway if they had a brain infarct and/or white matter hyperintensities load ≥1.11% of total intracranial volume (which corresponds to the top 25% of white matter hyperintensities in an independent non-demented sample). We used a global cognitive z-score as a measure of cognition. We found no evidence that the presence or absence of vascular pathology influenced the presence or absence of amyloid pathology and vice versa, suggesting that the two processes seem to be independent. Baseline cognitive performance was lower in older individuals, in males, those with lower education/occupation, and those on the amyloid pathway. The rate of cognitive decline was higher in older individuals (P < 0.001) and those with amyloid (P = 0.0003) or vascular (P = 0.0037) pathologies. In those subjects with both vascular and amyloid pathologies, the effect of both pathologies on cognition was additive and not synergistic. For a 79-year-old subject, the predicted annual rate of global z-score decline was −0.02 if on neither pathway, −0.07 if on the vascular pathway, −0.08 if on the amyloid pathway and −0.13 if on both pathways. The main conclusions of this study were: (i) amyloid and vascular pathologies seem to be at least partly independent processes that both affect longitudinal cognitive trajectories adversely and are major drivers of cognitive decline in the elderly; and (ii) cognitive reserve seems to offset the deleterious effect of both pathologies on the cognitive trajectories.
doi:10.1093/brain/awu393
PMCID: PMC4339775  PMID: 25595145
ageing; cognitive neurology; neuroimaging; neuro protective strategies
19.  Microbleeds in the logopenic variant of primary progressive aphasia 
Background
Microbleeds have been associated with Alzheimer’s disease (AD), although it is unclear whether they occur in atypical presentations of AD, such as the logopenic variant of primary progressive aphasia (lvPPA). We aimed to assess the presence and clinical correlates of microbleeds in lvPPA.
Methods
Thirteen lvPPA subjects underwent 3T T2*-weighted and fluid-attenuated inversion recovery MRI and Pittsburgh Compound B (PiB) PET imaging. Microbleeds were identified on manual review and assigned a regional location. Total and regional white matter hyperintensity (WMH) burden was measured.
Results
Microbleeds were observed in four lvPPA subjects (31%); most common in frontal lobe. Subjects with microbleeds were older, more likely female, and had a greater burden of WMH than those without microbleeds. The regional distribution of microbleeds did not match the regional distribution of WMH. All cases were PiB-positive.
Conclusions
Microbleeds occur in approximately 1/3 subjects with lvPPA, with older women at the highest risk.
doi:10.1016/j.jalz.2013.01.006
PMCID: PMC3706560  PMID: 23562427
Logopenic variant of primary progressive aphasia; Alzheimer’s disease; microbleeds; white matter hyperintensities
20.  MRI and pathology of REM sleep behavior disorder in dementia with Lewy bodies 
Neurology  2013;81(19):1681-1689.
Objective:
To determine structural MRI and digital microscopic characteristics of REM sleep behavior disorder in individuals with low-, intermediate-, and high-likelihood dementia with Lewy bodies (DLB) at autopsy.
Methods:
Patients with autopsy-confirmed low-, intermediate-, and high-likelihood DLB, according to the probability statement recommended by the third report of the DLB Consortium, and antemortem MRI, were identified (n = 75). The clinical history was assessed for presence (n = 35) and absence (n = 40) of probable REM sleep behavior disorder (pRBD), and patients' antemortem MRIs were compared using voxel-based morphometry. Pathologic burdens of phospho-tau, β-amyloid, and α-synuclein were measured in regions associated with early neuropathologic involvement, the hippocampus and amygdala.
Results:
pRBD was present in 21 patients (60%) with high-likelihood, 12 patients (34%) with intermediate-likelihood, and 2 patients (6%) with low-likelihood DLB. Patients with pRBD were younger, more likely to be male (p ≤ 0.001), and had a more frequent neuropathologic diagnosis of diffuse (neocortical) Lewy body disease. In the hippocampus and amygdala, phospho-tau and β-amyloid burden were lower in patients with pRBD compared with those without pRBD (p < 0.01). α-Synuclein burden did not differ in the hippocampus, but trended in the amygdala. Patients without pRBD had greater atrophy of temporoparietal cortices, hippocampus, and amygdala (p < 0.001) than those with pRBD; atrophy of the hippocampus (p = 0.005) and amygdala (p = 0.02) were associated with greater phospho-tau burdens in these regions.
Conclusion:
Presence of pRBD is associated with a higher likelihood of DLB and less severe Alzheimer-related pathology in the medial temporal lobes, whereas absence of pRBD is characterized by Alzheimer-like atrophy patterns on MRI and increased phospho-tau burden.
doi:10.1212/01.wnl.0000435299.57153.f0
PMCID: PMC3812105  PMID: 24107861
21.  Quantitative neurofibrillary tangle density and brain volumetric MRI analyses in Alzheimer’s disease presenting as logopenic progressive aphasia 
Brain and language  2013;127(2):10.1016/j.bandl.2013.02.003.
Neurofibrillary tangles (NFTs) are one of the key histological lesions of Alzheimer’s disease (AD) and are associated with brain atrophy. We assessed regional NFT density in 30 patients with AD, 10 of which presented as the logopenic variant of primary progressive aphasia (lvPPA) and 20 that presented as dementia of the Alzheimer’s type (DAT). Regional grey matter volumes were measured using antemortem MRI. NFT density was significantly higher in left temporoparietal cortices in lvPPA compared to DAT, with no differences observed in hippocampus. There was a trend for the ratio of temporoparietal-to-hippocampal NFT density to be higher in lvPPA. The imaging findings mirrored the pathological findings, with smaller left temporoparietal volumes observed in lvPPA compared to DAT, and no differences observed in hippocampal volume. This study demonstrates that lvPPA is associated with a phenomenon of enhanced temporoparietal neurodegeneration, a finding that improves our understanding of the biological basis of lvPPA.
doi:10.1016/j.bandl.2013.02.003
PMCID: PMC3840097  PMID: 23541297
Primary progressive aphasia; Logopenic variant of primary progressive aphasia; Alzheimer’s disease; Neurofibrillary tangles; Hippocampus; MRI; Apolipoprotein E; TDP-43; Voxel-based morphometry; Alzheimer’s dementia
22.  Identification of an atypical variant of logopenic progressive aphasia 
Brain and language  2013;127(2):10.1016/j.bandl.2013.02.007.
The purpose of this study was to examine the association between aphasia severity and neurocognitive function, disease duration and temporoparietal atrophy in 21 individuals with the logopenic variant of primary progressive aphasia (lvPPA). We found significant correlations between aphasia severity and neurocognitive severity as well as temporoparietal atrophy; but not disease duration. Cluster analysis identified three variants of lvPPA: (1) subjects with mild aphasia and short disease duration (mild typical lvPPA); (2) subjects with mild aphasia and long disease duration (mild atypical lvPPA); and, (3) subjects with severe aphasia and relatively long disease duration (severe typical lvPPA). All three variants showed temporoparietal atrophy, with the mild atypical group showing the least atrophy despite the longest disease duration. The mild atypical group also showed mild neuropsychological impairment. The subjects with mild aphasia and neuropsychological impairment despite long disease duration may represent a slowly progressive variant of lvPPA.
doi:10.1016/j.bandl.2013.02.007
PMCID: PMC3725183  PMID: 23566690
Primary progressive aphasia; Logopenic aphasia; Neurocognitive impairment; Temporoparietal atrophy; Voxel-based morphometry
23.  Improved DTI registration allows voxel-based analysis that outperforms Tract-Based Spatial Statistics 
NeuroImage  2014;94:65-78.
Tract-Based Spatial Statistics (TBSS) is a popular software pipeline to coregister sets of diffusion tensor Fractional Anisotropy (FA) images for performing voxel-wise comparisons. It is primarily defined by its skeleton projection step intended to reduce effects of local misregistration. A white matter “skeleton” is computed by morphological thinning of the inter-subject mean FA, and then all voxels are projected to the nearest location on this skeleton. Here we investigate several enhancements to the TBSS pipeline based on recent advances in registration for other modalities, principally based on groupwise registration with the ANTS-SyN algorithm. We validate these enhancements using simulation experiments with synthetically-modified images. When used with these enhancements, we discover that TBSS's skeleton projection step actually reduces algorithm accuracy, as the improved registration leaves fewer errors to warrant correction, and the effects of this projection's compromises become stronger than those of its benefits. In our experiments, our proposed pipeline without skeleton projection is more sensitive for detecting true changes and has greater specificity in resisting false positives from misregistration. We also present comparative results of the proposed and traditional methods, both with and without the skeleton projection step, on three real-life datasets: two comparing differing populations of Alzheimer's disease patients to matched controls, and one comparing progressive supranuclear palsy patients to matched controls. The proposed pipeline produces more plausible results according to each disease's pathophysiology.
doi:10.1016/j.neuroimage.2014.03.026
PMCID: PMC4137565  PMID: 24650605
DTI; Fractional Anisotropy; Voxel-based analysis; VBM; TBSS; Registration
24.  Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA 
Neurology  2013;81(4):337-345.
Objective:
We assessed whether clinical and imaging features of subjects with apraxia of speech (AOS) more severe than aphasia (dominant AOS) are more similar to agrammatic primary progressive aphasia (agPPA) or to primary progressive AOS (PPAOS).
Methods:
Sixty-seven subjects (PPAOS = 18, dominant AOS = 10, agPPA = 9, age-matched controls = 30) who all had volumetric MRI, diffusion tensor imaging, F18-fluorodeoxyglucose and C11-labeled Pittsburgh compound B (PiB)-PET scanning, as well as neurologic and speech and language assessments, were included in this case-control study. AOS was classified as either type 1, predominated by sound distortions and distorted sound substitutions, or type 2, predominated by syllabically segmented prosodic speech patterns.
Results:
The dominant AOS subjects most often had AOS type 2, similar to PPAOS. In contrast, agPPA subjects most often had type 1 (p = 0.01). Both dominant AOS and PPAOS showed focal imaging abnormalities in premotor cortex, whereas agPPA showed widespread involvement affecting premotor, prefrontal, temporal and parietal lobes, caudate, and insula. Only the dominant AOS and PPAOS groups showed midbrain atrophy compared with controls. No differences were observed in PiB binding across all 3 groups, with the majority being PiB negative.
Conclusion:
These results suggest that dominant AOS is more similar to PPAOS than agPPA, with dominant AOS and PPAOS exhibiting a clinically distinguishable subtype of progressive AOS compared with agPPA.
doi:10.1212/WNL.0b013e31829c5ed5
PMCID: PMC3772832  PMID: 23803320
25.  MRI and MRS predictors of mild cognitive impairment in a population-based sample 
Neurology  2013;81(2):126-133.
Objective:
To investigate MRI and proton magnetic resonance spectroscopy (MRS) predictors of mild cognitive impairment (MCI) in cognitively normal older adults.
Methods:
Subjects were cognitively normal older adults (n = 1,156) who participated in the population-based Mayo Clinic Study of Aging MRI/MRS study from August 2005 to December 2010 and had at least one annual clinical follow-up. Single-voxel MRS was performed from the posterior cingulate gyri, and hippocampal volumes and white matter hyperintensity volumes were quantified using automated methods. Brain infarcts were assessed on MRI. Cox proportional hazards regression, with age as the time scale, was used to assess the effect of MRI and MRS markers on the risk of progression from cognitively normal to MCI. Linear mixed-effects models were used to assess the effect of MRI and MRS markers on cognitive decline.
Results:
After a median follow-up of 2.8 years, 214 participants had progressed to MCI or dementia (estimated incidence rate = 6.1% per year; 95% confidence interval = 5.3%–7.0%). In univariable modeling, hippocampal volume, white matter hyperintensity volume, and N-acetylaspartate/myo-inositol were significant predictors of MCI in cognitively normal older adults. In multivariable modeling, only decreased hippocampal volume and N-acetylaspartate/myo-inositol were independent predictors of MCI. These MRI/MRS predictors of MCI as well as infarcts were associated with cognitive decline (p < 0.05).
Conclusion:
Quantitative MRI and MRS markers predict progression to MCI and cognitive decline in cognitively normal older adults. MRS may contribute to the assessment of preclinical dementia pathologies by capturing neurodegenerative changes that are not detected by hippocampal volumetry.
doi:10.1212/WNL.0b013e31829a3329
PMCID: PMC3770173  PMID: 23761624

Results 1-25 (69)