Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Assessment of visual fixation in vegetative and minimally conscious states 
BMC Neurology  2014;14:147.
Visual fixation plays a key role in the differentiation between vegetative state/unresponsive wakefulness (VS/UWS) syndrome and minimally conscious state (MCS). However, the use of different stimuli changes the frequency of visual fixation occured in patients, thereby possibly affecting the accuracy of the diagnosis. In order to establish a standardized assessment of visual fixation in patients in disorders of consciousness (DOC), we compared the frequency of visual fixation elicited by mirror,a ball and a light.
Visual fixation was assessed in eighty-one post-comatose patients diagnosed with a MCS or VS/UWS. Occurrence of fixation to different stimuli was analysis used Chi-square testing.
40 (49%) out of the 81 patients showed fixation to visual stimuli. Among those, significantly more patients (39, 48%) had visual fixation elicited by mirror compared to a ball (23, 28%) and mirror compared to a light (20, 25%).
The use of a mirror during the assessment of visual fixation showed higher positive response rate, compared to other stimuli in eliciting a visual fixating response. Therefore, fixation elicited by a mirror can be a very sensitive and accurate test to differentiate the two disorders of consciousness.
PMCID: PMC4112970  PMID: 25027769
Disorders of consciousness; Vegetative state; Unresponsive wakefulness syndrome; Minimally conscious state; Visual fixation
2.  Effect of zolpidem in chronic disorders of consciousness: a prospective open-label study 
Functional Neurology  2014;28(4):259-264.
Zolpidem has been reported as an “awakening drug” in some patients with disorders of consciousness (DOC). We here present the results of a prospective open-label study in chronic DOC patients. Sixty patients (35±15 years; 18 females; mean time since insult ± SD: 4±5.5 years; 31 with traumatic etiology) with a diagnosis of vegetative state/unresponsive wakefulness syndrome (n=28) or minimally conscious state (n=32) were behaviorally assessed using the Coma Recovery Scale-Revised (CRS-R) before and one hour after administration of 10 mg of zolpidem. At the group level, the diagnosis did not change after intake of zolpidem (p=0.10) and CRS-R total scores decreased (p=0.01). Twelve patients (20%) showed improved behaviors and/or CRS-R total scores after zolpidem administration but in only one patient was the diagnosis after zolpidem intake found to show a significant improvement (functional object use), which suggested a change of diagnosis. However, in this patient, a double-blind placebo-controlled trial was performed in order to better specify the effects of zolpidem, but the patient, on this trial, failed to show any clinical improvements.
The present open-label study therefore failed to show any clinically significant improvement (i.e., change of diagnosis) in any of the 60 studied chronic DOC patients.
PMCID: PMC3951253  PMID: 24598393
disorders of consciousness; minimally conscious state; treatment; vegetative state; zolpidem
3.  Assessment of localisation to auditory stimulation in post-comatose states: use the patient’s own name 
BMC Neurology  2013;13:27.
At present, there is no consensus on how to clinically assess localisation to sound in patients recovering from coma. We here studied auditory localisation using the patient’s own name as compared to a meaningless sound (i.e., ringing bell).
Eighty-six post-comatose patients diagnosed with a vegetative state/unresponsive wakefulness syndrome or a minimally conscious state were prospectively included. Localisation of auditory stimulation (i.e., head or eyes orientation toward the sound) was assessed using the patient’s own name as compared to a ringing bell. Statistical analyses used binomial testing with bonferroni correction for multiple comparisons.
37 (43%) out of the 86 studied patients showed localisation to auditory stimulation. More patients (n=34, 40%) oriented the head or eyes to their own name as compared to sound (n=20, 23%; p<0.001).
When assessing auditory function in disorders of consciousness, using the patient’s own name is here shown to be more suitable to elicit a response as compared to neutral sound.
PMCID: PMC3606124  PMID: 23506054
Localisation to sound; Auditory localisation; Vegetative state; Unresponsive wakefulness syndrome; Minimally conscious state; Own name; Disorders of consciousness
4.  Electrophysiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state 
Brain  2011;134(8):2222-2232.
The existence of normal sleep in patients in a vegetative state is still a matter of debate. Previous electrophysiological sleep studies in patients with disorders of consciousness did not differentiate patients in a vegetative state from patients in a minimally conscious state. Using high-density electroencephalographic sleep recordings, 11 patients with disorders of consciousness (six in a minimally conscious state, five in a vegetative state) were studied to correlate the electrophysiological changes associated with sleep to behavioural changes in vigilance (sustained eye closure and muscle inactivity). All minimally conscious patients showed clear electroencephalographic changes associated with decreases in behavioural vigilance. In the five minimally conscious patients showing sustained behavioural sleep periods, we identified several electrophysiological characteristics typical of normal sleep. In particular, all minimally conscious patients showed an alternating non-rapid eye movement/rapid eye movement sleep pattern and a homoeostatic decline of electroencephalographic slow wave activity through the night. In contrast, for most patients in a vegetative state, while preserved behavioural sleep was observed, the electroencephalographic patterns remained virtually unchanged during periods with the eyes closed compared to periods of behavioural wakefulness (eyes open and muscle activity). No slow wave sleep or rapid eye movement sleep stages could be identified and no homoeostatic regulation of sleep-related slow wave activity was observed over the night-time period. In conclusion, we observed behavioural, but no electrophysiological, sleep wake patterns in patients in a vegetative state, while there were near-to-normal patterns of sleep in patients in a minimally conscious state. These results shed light on the relationship between sleep electrophysiology and the level of consciousness in severely brain-damaged patients. We suggest that the study of sleep and homoeostatic regulation of slow wave activity may provide a complementary tool for the assessment of brain function in minimally conscious state and vegetative state patients.
PMCID: PMC3155704  PMID: 21841201
sleep; vegetative state; minimally conscious state; consciousness; EEG
5.  Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state  
Functional Neurology  2011;26(1): 25 - 30 .
Monitoring the level of consciousness in brain-injured patients with disorders of consciousness is crucial as it provides diagnostic and prognostic information. Behavioral assessment remains the gold standard for assessing consciousness but previous studies have shown a high rate of misdiagnosis. This study aimed to investigate the usefulness of electroencephalography (EEG) entropy measurements in differentiating unconscious (coma or vegetative) from minimally conscious patients.
Left fronto-temporal EEG recordings (10-minute resting state epochs) were prospectively obtained in 56 patients and 16 age-matched healthy volunteers. Patients were assessed in the acute (≤1 month post-injury; n=29) or chronic (>1 month post-injury; n=27) stage. The etiology was traumatic in 23 patients. Automated online EEG entropy calculations (providing an arbitrary value ranging from 0 to 91) were compared with behavioral assessments (Coma Recovery Scale-Revised) and outcome.
EEG entropy correlated with Coma Recovery Scale total scores (r=0.49). Mean EEG entropy values were higher in minimally conscious (73±19; mean and standard deviation) than in vegetative/unresponsive wakefulness syndrome patients (45±28). Receiver operating characteristic analysis revealed an entropy cut-off value of 52 differentiating acute unconscious from minimally conscious patients (sensitivity 89% and specificity 90%). In chronic patients, entropy measurements offered no reliable diagnostic information. EEG entropy measurements did not allow prediction of outcome.
User-independent time-frequency balanced spectral EEG entropy measurements seem to constitute an interesting diagnostic – albeit not prognostic – tool for assessing neural network complexity in disorders of consciousness in the acute setting. Future studies are needed before using this tool in routine clinical practice, and these should seek to improve automated EEG quantification paradigms in order to reduce the remaining false negative and false positive findings.
PMCID: PMC3814509  PMID: 21693085
coma ;  EEG entropy ;  electroencephalography ;  minimally conscious state ;  unresponsive wakefulness syndrome ;  vegetative state
6.  Neural Plasticity Lessons from Disorders of Consciousness 
Communication and intentional behavior are supported by the brain's integrity at a structural and a functional level. When widespread loss of cerebral connectivity is brought about as a result of a severe brain injury, in many cases patients are not capable of conscious interactive behavior and are said to suffer from disorders of consciousness (e.g., coma, vegetative state/unresponsive wakefulness syndrome, minimally conscious states). This lesion paradigm has offered not only clinical insights, as how to improve diagnosis, prognosis, and treatment, but also put forward scientific opportunities to study the brain's plastic abilities. We here review interventional and observational studies performed in severely brain-injured patients with regards to recovery of consciousness. The study of the recovered conscious brain (spontaneous and/or after surgical or pharmacologic interventions), suggests a link between some specific brain areas and the capacity of the brain to sustain conscious experience, challenging at the same time the notion of fixed temporal boundaries in rehabilitative processes. Altered functional connectivity, cerebral structural reorganization as well as behavioral amelioration after invasive treatments will be discussed as the main indices for plasticity in these challenging patients. The study of patients with chronic disorders of consciousness may, thus, provide further insights not only at a clinical level (i.e., medical management and rehabilitation) but also from a scientific-theoretical perspective (i.e., the brain's plastic abilities and the pursuit of the neural correlate of consciousness).
PMCID: PMC3153849  PMID: 21833298
neural plasticity; recovery; unresponsive wakefulness syndrome; vegetative state; minimally conscious state; consciousness; functional neuroimaging; deep brain stimulation
7.  Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients 
Brain  2009;133(1):161-171.
The ‘default network’ is defined as a set of areas, encompassing posterior-cingulate/precuneus, anterior cingulate/mesiofrontal cortex and temporo-parietal junctions, that show more activity at rest than during attention-demanding tasks. Recent studies have shown that it is possible to reliably identify this network in the absence of any task, by resting state functional magnetic resonance imaging connectivity analyses in healthy volunteers. However, the functional significance of these spontaneous brain activity fluctuations remains unclear. The aim of this study was to test if the integrity of this resting-state connectivity pattern in the default network would differ in different pathological alterations of consciousness. Fourteen non-communicative brain-damaged patients and 14 healthy controls participated in the study. Connectivity was investigated using probabilistic independent component analysis, and an automated template-matching component selection approach. Connectivity in all default network areas was found to be negatively correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative then coma patients. Furthermore, precuneus connectivity was found to be significantly stronger in minimally conscious patients as compared with unconscious patients. Locked-in syndrome patient’s default network connectivity was not significantly different from controls. Our results show that default network connectivity is decreased in severely brain-damaged patients, in proportion to their degree of consciousness impairment. Future prospective studies in a larger patient population are needed in order to evaluate the prognostic value of the presented methodology.
PMCID: PMC2801329  PMID: 20034928
Default mode; fMRI; coma; vegetative state; minimally conscious state
8.  Visual fixation in the vegetative state: an observational case series PET study 
BMC Neurology  2010;10:35.
Assessment of visual fixation is commonly used in the clinical examination of patients with disorders of consciousness. However, different international guidelines seem to disagree whether fixation is compatible with the diagnosis of the vegetative state (i.e., represents "automatic" subcortical processing) or is a sufficient sign of consciousness and higher order cortical processing.
We here studied cerebral metabolism in ten patients with chronic post-anoxic encephalopathy and 39 age-matched healthy controls. Five patients were in a vegetative state (without fixation) and five presented visual fixation but otherwise showed all criteria typical of the vegetative state. Patients were matched for age, etiology and time since insult and were followed by repeated Coma Recovery Scale-Revised (CRS-R) assessments for at least 1 year. Sustained visual fixation was considered as present when the eyes refixated a moving target for more than 2 seconds as defined by CRS-R criteria.
Patients without fixation showed metabolic dysfunction in a widespread fronto-parietal cortical network (with only sparing of the brainstem and cerebellum) which was not different from the brain function seen in patients with visual fixation. Cortico-cortical functional connectivity with visual cortex showed no difference between both patient groups. Recovery rates did not differ between patients without or with fixation (none of the patients showed good outcome).
Our findings suggest that sustained visual fixation in (non-traumatic) disorders of consciousness does not necessarily reflect consciousness and higher order cortical brain function.
PMCID: PMC2895583  PMID: 20504324
9.  Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment 
BMC Neurology  2009;9:35.
Previously published studies have reported that up to 43% of patients with disorders of consciousness are erroneously assigned a diagnosis of vegetative state (VS). However, no recent studies have investigated the accuracy of this grave clinical diagnosis. In this study, we compared consensus-based diagnoses of VS and MCS to those based on a well-established standardized neurobehavioral rating scale, the JFK Coma Recovery Scale-Revised (CRS-R).
We prospectively followed 103 patients (55 ± 19 years) with mixed etiologies and compared the clinical consensus diagnosis provided by the physician on the basis of the medical staff's daily observations to diagnoses derived from CRS-R assessments performed by research staff. All patients were assigned a diagnosis of 'VS', 'MCS' or 'uncertain diagnosis.'
Of the 44 patients diagnosed with VS based on the clinical consensus of the medical team, 18 (41%) were found to be in MCS following standardized assessment with the CRS-R. In the 41 patients with a consensus diagnosis of MCS, 4 (10%) had emerged from MCS, according to the CRS-R. We also found that the majority of patients assigned an uncertain diagnosis by clinical consensus (89%) were in MCS based on CRS-R findings.
Despite the importance of diagnostic accuracy, the rate of misdiagnosis of VS has not substantially changed in the past 15 years. Standardized neurobehavioral assessment is a more sensitive means of establishing differential diagnosis in patients with disorders of consciousness when compared to diagnoses determined by clinical consensus.
PMCID: PMC2718857  PMID: 19622138

Results 1-9 (9)