Search tips
Search criteria

Results 1-24 (24)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Nerve growth factor acts through the TrkA receptor to protect sensory neurons from the damaging effects of the HIV-1 viral protein, Vpr 
Neuroscience  2013;252:10.1016/j.neuroscience.2013.07.046.
Distal sensory polyneuropathy (DSP) with associated neuropathic pain is the most common neurological disorder affecting patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Viral protein R (Vpr) is a neurotoxic protein encoded by HIV-1 and secreted by infected macrophages. Vpr reduces neuronal viability, increases cytosolic calcium and membrane excitability of cultured dorsal root ganglion (DRG) sensory neurons, and is associated with mechanical allodynia in vivo. A clinical trial with HIV/AIDS patients demonstrated that nerve growth factor (NGF) reduced the severity of DSP-associated neuropathic pain, a problem linked to damage to small diameter, potentially NGF responsive fibers. Herein, the actions of NGF were investigated in our Vpr model of DSP and we demonstrated that NGF significantly protected sensory neurons from the effects of Vpr. Footpads of immunodeficient Vpr transgenic (vpr/RAG1−/−) mice displayed allodynia (p<0.05), diminished epidermal innervation (p<0.01) and reduced NGF mRNA expression (p<0.001) compared to immunodeficient (wildtype/RAG1−/−) littermate control mice. Compartmented cultures confirmed recombinant Vpr exposure to the DRG neuronal perikarya decreased distal neurite extension (p<0.01), whereas NGF exposure at these distal axons protected the DRG neurons from the Vpr-induced effect on their cell bodies. NGF prevented Vpr-induced attenuation of the phosphorylated glycogen synthase-3 axon extension pathway and tropomyosin related kinase A (TrkA) receptor expression in DRG neurons (p<0.05) and it directly counteracted the cytosolic calcium burst caused by Vpr exposure to DRG neurons (p<0.01). TrkA receptor antagonists indicated that NGF acted through the TrkA receptor to block the Vpr-mediated decrease in axon outgrowth in neonatal and adult rat and fetal human DRG neurons (p<0.05). Similarly, inhibiting the lower affinity NGF receptor, p75, blocked Vpr’s effect on DRG neurons. Overall, NGF/TrkA signalling or p75 receptor inhibition protects somatic sensory neurons exposed to Vpr, thus laying the groundwork for potential therapeutic options for HIV/AIDS patients suffering from DSP.
PMCID: PMC3829629  PMID: 23912036
2.  Human Endogenous Retrovirus-K(II) Envelope Induction Protects Neurons during HIV/AIDS 
PLoS ONE  2014;9(7):e97984.
Human endogenous retroviruses (HERVs) are differentially expressed depending on the cell type and physiological circumstances. HERV-K has been implicated in the pathogenesis of several diseases although the functional consequences of its expression remain unknown. Human immunodeficiency virus (HIV) infection causes neuroinflammation with neuronal damage and death. Herein, we investigated HERV-K(II)/(HML-2) envelope (Env) expression and its actions in the brain during HIV/AIDS. HERV-K(II) Env expression was assessed in healthy brain tissues, autopsied HIV HIV− infected (HIV+) and uninfected (HIV−) brains and in neural cell cultures by real time RT-PCR, massively parallel (deep) sequencing, immunoblotting and immunohistochemistry. Neuronal and neural stem cells expressing HERV-K(II) Env were analyzed in assays of host responses including cellular viability, immune responses and neurobehavioral outcomes. Deep sequencing of human brain transcriptomes disclosed that RNA sequences encoded by HERV-K were among the most abundant HERV sequences detected in human brain. Comparison of different cell types revealed that HERV-K(II) env RNA abundance was highest in cultured human neurons but was suppressed by epidermal growth factor exposure. HERV-K(II) Env immunoreactivity was increased in the cerebral cortex from persons with HIV/AIDS, principally localized in neurons. Human neuronal cells transfected with HERV-K(II) Env exhibited increased NGF and BDNF expression. Expression of HERV-K(II) Env in neuronal cells increased cellular viability and prevented neurotoxicity mediated by HIV-1 Vpr. Intracerebral delivery of HERV-K(II) Env expressed by neural stem cells suppressed TNF-α expression and microglial activation while also improving neurobehavioral deficits in vpr/RAG1−/− mice. HERV-K(II) Env was highly expressed in human neurons, especially during HIV/AIDS, but in addition exerted neuroprotective effects. These findings imply that HERV gene products might exert adaptive effects in circumstances of pathophysiological stress, perhaps underlying the conservation of HERVs within the human genome.
PMCID: PMC4079299  PMID: 24988390
3.  Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS 
Retrovirology  2014;11:35.
Human immunodeficiency virus type 1(HIV-1) infects and activates innate immune cells in the brain resulting in inflammation and neuronal death with accompanying neurological deficits. Induction of inflammasomes causes cleavage and release of IL-1β and IL-18, representing pathogenic processes that underlie inflammatory diseases although their contribution HIV-associated brain disease is unknown.
Investigation of inflammasome-associated genes revealed that IL-1β, IL-18 and caspase-1 were induced in brains of HIV-infected persons and detected in brain microglial cells. HIV-1 infection induced pro-IL-1β in human microglia at 4 hr post-infection with peak IL-1β release at 24 hr, which was accompanied by intracellular ASC translocation and caspase-1 activation. HIV-dependent release of IL-1β from a human macrophage cell line, THP-1, was inhibited by NLRP3 deficiency and high extracellular [K+]. Exposure of microglia to HIV-1 gp120 caused IL-1β production and similarly, HIV-1 envelope pseudotyped viral particles induced IL-1β release, unlike VSV-G pseudotyped particles. Infection of cultured feline macrophages by the related lentivirus, feline immunodeficiency virus (FIV), also resulted in the prompt induction of IL-1β. In vivo FIV infection activated multiple inflammasome-associated genes in microglia, which was accompanied by neuronal loss in cerebral cortex and neurological deficits. Multivariate analyses of data from FIV-infected and uninfected animals disclosed that IL-1β, NLRP3 and caspase-1 expression in cerebral cortex represented key molecular determinants of neurological deficits.
NLRP3 inflammasome activation was an early and integral aspect of lentivirus infection of microglia, which was associated with lentivirus-induced brain disease. Inflammasome activation in the brain might represent a potential target for therapeutic interventions in HIV/AIDS.
PMCID: PMC4038111  PMID: 24886384
Inflammmasome; NLRP3; IL-1beta; HIV-1; FIV; Caspase-1; ASC microglia; Nervous system
4.  Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence 
The lentiviruses, human and feline immunodeficiency viruses (HIV-1 and FIV, respectively), infect the brain and cause neurovirulence, evident as neuronal injury, inflammation, and neurobehavioral abnormalities with diminished survival. Herein, different lentivirus infections in conjunction with neural cell viability were investigated, concentrating on type 1 interferon-regulated pathways. Transcriptomic network analyses showed a preponderance of genes involved in type 1 interferon signaling, which was verified by increased expression of the type 1 interferon-associated genes, Mx1 and CD317, in brains from HIV-infected persons (P<0.05). Leukocytes infected with different strains of FIV or HIV-1 showed differential Mx1 and CD317 expression (P<0.05). In vivo studies of animals infected with the FIV strains, FIVch or FIVncsu, revealed that FIVch-infected animals displayed deficits in memory and motor speed compared with the FIVncsu- and mock-infected groups (P<0.05). TNF-α, IL-1β, and CD40 expression was increased in the brains of FIVch-infected animals; conversely, Mx1 and CD317 transcript levels were increased in the brains of FIVncsu-infected animals, principally in microglia (P<0.05). Gliosis and neuronal loss were evident among FIVch-infected animals compared with mock- and FIVncsu-infected animals (P<0.05). Lentiviral infections induce type 1 interferon-regulated gene expression in microglia in a viral diversity-dependent manner, representing a mechanism by which immune responses might be exploited to limit neurovirulence.
PMCID: PMC3955194  PMID: 23608145 CAMSID: cams4196
HIV-1; FIV; type 1 interferon; tetherin; CD317; BST-2; microglia
5.  Allopregnanolone and neuroinflammation: a focus on multiple sclerosis 
The progesterone derivative allopregnanolone (ALLO) is one of the most widely studied compounds among neurosteroids. Through interactions with GABA-A receptors expressed by neurons and glial cells, ALLO has been shown to affect diverse aspects of neural cell physiology, including cell proliferation and survival, migration, and gene expression. Recent data point to important roles for ALLO in different neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis (MS). Dysregulation in ALLO biosynthesis pathways has been reported in brain tissue from MS patients as well as in the central nervous system (CNS) tissue derived from MS animal models. Administration of ALLO has been shown to ameliorate neurobehavioral deficits together with neuropathology and inflammation in the CNS of animals with autoimmune demyelination. These findings are in line with previous reports indicating growth- and differentiation-promoting actions of ALLO on neurons and glial cells as well as its neuroprotective effects in the context of other CNS diseases. Nonetheless, these findings have also raised the possibility that ALLO might influence leukocyte biology and associated neuroinflammatory mechanisms independent of its neuroregenerative properties. Herein, we review the current knowledge regarding the role of ALLO in the pathogenesis of MS, and discuss the potential cellular and molecular pathways that might be influenced by ALLO in the context of disease.
PMCID: PMC4042158  PMID: 24917787
neurosteroid; allopregnanolone; neuroinflammation; multiple sclerosis; experimental autoimmune encephalomyelitis
6.  Inflammasome induction in Rasmussen’s encephalitis: cortical and associated white matter pathogenesis 
Rasmussen’s encephalitis (RE) is an inflammatory encephalopathy of unknown cause defined by seizures with progressive neurological disabilities. Herein, the pathogenesis of RE was investigated focusing on inflammasome activation in the brain.
Patients with RE at the University of Alberta, Edmonton, AB, Canada, were identified and analyzed by neuroimaging, neuropsychological, molecular, and pathological tools. Primary human microglia, astrocytes, and neurons were examined using RT-PCR, enzyme-linked immunosorbent assay (ELISA), and western blotting.
Four patients with RE were identified at the University of Alberta. Magnetic resonance imaging (MRI) disclosed increased signal intensities in cerebral white matter adjacent to cortical lesions of RE patients, accompanied by a decline in neurocognitive processing speed (P <0.05). CD3ϵ, HLA-DRA, and TNFα together with several inflammasome-associated genes (IL-1β, IL-18, NLRP1, NLRP3, and CASP1) showed increased transcript levels in RE brains compared to non-RE controls (n = 6; P <0.05). Cultured human microglia displayed expression of inflammasome-associated genes and responded to inflammasome activators by releasing IL-1β, which was inhibited by the caspase inhibitor, zVAD-fmk. Major histocompatibility complex (MHC) class II, IL-1β, caspase-1, and alanine/serine/cysteine (ASC) immunoreactivity were increased in RE brain tissues, especially in white matter myeloid cells, in conjunction with mononuclear cell infiltration and gliosis. Neuroinflammation in RE brains was present in both white matter and adjacent cortex with associated induction of inflammasome components, which was correlated with neuroimaging and neuropsychological deficits.
Inflammasome activation likely contributes to the disease process underlying RE and offers a mechanistic target for future therapeutic interventions.
PMCID: PMC3881507  PMID: 24330827
Rasmussen’s encephalitis; White matter; Inflammasome; Innate immunity
7.  Brain Microbial Populations in HIV/AIDS: α-Proteobacteria Predominate Independent of Host Immune Status 
PLoS ONE  2013;8(1):e54673.
The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1−/− mouse brains. Intracerebral implantation of human brain homogenates into RAG1−/− mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain’s microbiome regardless of underlying immune status, which could be transferred into naïve hosts leading to microbial persistence in the brain.
PMCID: PMC3552853  PMID: 23355888
8.  Proteinase-activated receptor-1 mediates dorsal root ganglion neuronal degeneration in HIV/AIDS 
Brain  2011;134(11):3209-3221.
Distal sensory polyneuropathy is a frequent complication of lentivirus infections of the peripheral nervous system including both human immunodeficiency virus and feline immunodeficiency virus. Proteinase-activated receptors are G protein-coupled receptors implicated in the pathogenesis of neuroinflammation and neurodegeneration. Proteinase-activated receptor-1 is expressed on different cell types within the nervous system including neurons and glia, but little is known about its role in the pathogenesis of inflammatory peripheral nerve diseases, particularly lentivirus-related distal sensory polyneuropathy. Herein, the expression and functions of proteinase-activated receptor-1 in the peripheral nervous system during human immunodeficiency virus and feline immunodeficiency virus infections were investigated. Proteinase-activated receptor-1 expression was most evident in autopsied dorsal root ganglion neurons from subjects infected with human immunodeficiency virus, compared with the dorsal root ganglia of uninfected subjects. Human immunodeficiency virus or feline immunodeficiency virus infection of cultured human or feline dorsal root ganglia caused upregulation of interleukin-1β and proteinase-activated receptor-1 expression. In the human immunodeficiency virus- or feline immunodeficiency virus-infected dorsal root ganglia, interleukin-1β activation was principally detected in macrophages, while neurons showed induction of proteinase-activated receptor-1. Binding of proteinase-activated receptor-1 by the selective proteinase-activated receptor-1-activating peptide resulted in neurite retraction and soma atrophy in conjunction with cytosolic calcium activation in human dorsal root ganglion neurons. Interleukin-1β exposure to feline or human dorsal root ganglia caused upregulation of proteinase-activated receptor-1 in neurons. Exposure of feline immunodeficiency virus-infected dorsal root ganglia to the interleukin-1 receptor antagonist prevented proteinase-activated receptor-1 induction and neurite retraction. In vivo feline immunodeficiency virus infection was associated with increased proteinase-activated receptor-1 expression on neurons and interleukin-1β induction in macrophages. Moreover, feline immunodeficiency virus infection caused hyposensitivity to mechanical stimulation. These data indicated that activation and upregulation of proteinase-activated receptor-1 by interleukin-1β contributed to dorsal root ganglion neuronal damage during lentivirus infections leading to the development of distal sensory polyneuropathy and might also provide new targets for future therapeutic interventions.
PMCID: PMC3212716  PMID: 22021895
PAR1; HIV; FIV; dorsal root ganglion; IL-1β
9.  Impaired neurosteroid synthesis in multiple sclerosis 
Brain  2011;134(9):2703-2721.
High-throughput technologies have led to advances in the recognition of disease pathways and their underlying mechanisms. To investigate the impact of micro-RNAs on the disease process in multiple sclerosis, a prototypic inflammatory neurological disorder, we examined cerebral white matter from patients with or without the disease by micro-RNA profiling, together with confirmatory reverse transcription–polymerase chain reaction analysis, immunoblotting and gas chromatography-mass spectrometry. These observations were verified using the in vivo multiple sclerosis model, experimental autoimmune encephalomyelitis. Brains of patients with or without multiple sclerosis demonstrated differential expression of multiple micro-RNAs, but expression of three neurosteroid synthesis enzyme-specific micro-RNAs (miR-338, miR-155 and miR-491) showed a bias towards induction in patients with multiple sclerosis (P < 0.05). Analysis of the neurosteroidogenic pathways targeted by micro-RNAs revealed suppression of enzyme transcript and protein levels in the white matter of patients with multiple sclerosis (P < 0.05). This was confirmed by firefly/Renilla luciferase micro-RNA target knockdown experiments (P < 0.05) and detection of specific micro-RNAs by in situ hybridization in the brains of patients with or without multiple sclerosis. Levels of important neurosteroids, including allopregnanolone, were suppressed in the white matter of patients with multiple sclerosis (P < 0.05). Induction of the murine micro-RNAs, miR-338 and miR-155, accompanied by diminished expression of neurosteroidogenic enzymes and allopregnanolone, was also observed in the brains of mice with experimental autoimmune encephalomyelitis (P < 0.05). Allopregnanolone treatment of the experimental autoimmune encephalomyelitis mouse model limited the associated neuropathology, including neuroinflammation, myelin and axonal injury and reduced neurobehavioral deficits (P < 0.05). These multi-platform studies point to impaired neurosteroidogenesis in both multiple sclerosis and experimental autoimmune encephalomyelitis. The findings also indicate that allopregnanolone and perhaps other neurosteroid-like compounds might represent potential biomarkers or therapies for multiple sclerosis.
PMCID: PMC4141444  PMID: 21908875
microRNA; multiple sclerosis; experimental autoimmune encephalomyelitis; neurosteroid
11.  Modulation of NKG2D-Mediated Cytotoxic Functions of Natural Killer Cells by Viral Protein R from HIV-1 Primary Isolates▿† 
Journal of Virology  2011;85(23):12254-12261.
HIV-1 viral protein R (Vpr) from laboratory-adapted virus strains activates the DNA damage/stress sensor ATR kinase and induces cell cycle arrest at the G2/M phase through a process that requires Vpr to engage the DDB1-CUL4A (VprBP/DCAF-1) E3 ligase complex. Activation of this DNA damage/stress checkpoint in G2 by Vpr was shown to modulate NKG2D-dependent NK cell effector functions via enhancing expression of NKG2D ligands, notably ULBP2. However, it is unknown whether Vpr from HIV-1 primary isolates (groups M, N, O, and P) could modulate NKG2D-mediated cytotoxic functions of NK cells. Here, we report that Vpr from most HIV-1 primary isolates can upregulate ULBP2 expression and induce NKG2D-dependent NK cell killing. Importantly, these activities were always accompanied by an active G2 cell cycle arrest function. Interestingly, Vpr variants from group P and a clade D isolate of group M were defective at enhancing NKG2D-mediated NK cell lysis owing to their inability to augment ULBP2 expression. However, distinct mechanisms were responsible for their failure to do so. While Vpr from group P was deficient in its ability to engage the DDB1-CUL4A (VprBP/DCAF-1) E3 ligase complex, the Vpr variant from group D was unable to properly localize to the nucleus, underlining the importance of these biological properties in Vpr function. In conclusion, the ability of Vpr from HIV-1 primary isolates to regulate NK cell effector function underscores the importance of this HIV-1 accessory protein in the modulation of the host's innate immune responses.
PMCID: PMC3209390  PMID: 21957298
12.  Domain- and nucleotide-specific Rev response element regulation of feline immunodeficiency virus production 
Virology  2010;404(2):246-260.
Computational analysis of feline immunodeficiency virus (FIV) RNA sequences indicated that common FIV strains contain a rev response element (RRE) defined by a long unbranched hairpin with 6 stem-loop sub-domains, termed stem-loop A (SLA). To examine the role of the RNA secondary structure of the RRE, mutational analyses were performed in both an infectious FIV molecular clone and a FIV CAT-RRE reporter system. These studies disclosed that the stems within SLA (SA1, 2, 3, 4, and 5) of the RRE were critical but SA6 was not essential for FIV replication and CAT expression. These studies also revealed that the secondary structure rather than an antisense protein (ASP) mediates virus expression and replication in vitro. In addition, a single synonymous mutation within the FIV-RRE, SA3/45, reduced viral reverse transcriptase activity and p24 expression after transfection but in addition also showed a marked reduction in viral expression and production following infection.
PMCID: PMC2902707  PMID: 20570310
FIV; Rev response element; RNA secondary structure; ASP
13.  Interactions between human immunodeficiency virus (HIV)-1 Vpr expression and innate immunity influence neurovirulence 
Retrovirology  2011;8:44.
Viral diversity and abundance are defining properties of human immunodeficiency virus (HIV)-1's biology and pathogenicity. Despite the increasing availability of antiretroviral therapy, HIV-associated dementia (HAD) continues to be a devastating consequence of HIV-1 infection of the brain although the underlying disease mechanisms remain uncertain. Herein, molecular diversity within the HIV-1 non-structural gene, Vpr, was examined in RNA sequences derived from brain and blood of HIV/AIDS patients with or without HIV-associated dementia (HAD) together with the ensuing pathobiological effects.
Cloned brain- and blood-derived full length vpr alleles revealed that amino acid residue 77 within the brain-derived alleles distinguished HAD (77Q) from non-demented (ND) HIV/AIDS patients (77R) (p < 0.05) although vpr transcripts were more frequently detected in HAD brains (p < 0.05). Full length HIV-1 clones encoding the 77R-ND residue induced higher IFN-α, MX1 and BST-2 transcript levels in human glia relative to the 77Q-HAD encoding virus (p < 0.05) but both viruses exhibited similar levels of gene expression and replication. Myeloid cells transfected with 77Q-(pVpr77Q-HAD), 77R (pVpr77R-ND) or Vpr null (pVpr(-))-containing vectors showed that the pVpr77R-ND vector induced higher levels of immune gene expression (p < 0.05) and increased neurotoxicity (p < 0.05). Vpr peptides (amino acids 70-96) containing the 77Q-HAD or 77R-ND motifs induced similar levels of cytosolic calcium activation when exposed to human neurons. Human glia exposed to the 77R-ND peptide activated higher transcript levels of IFN-α, MX1, PRKRA and BST-2 relative to 77Q-HAD peptide (p < 0.05). The Vpr 77R-ND peptide was also more neurotoxic in a concentration-dependent manner when exposed to human neurons (p < 0.05). Stereotaxic implantation of full length Vpr, 77Q-HAD or 77R-ND peptides into the basal ganglia of mice revealed that full length Vpr and the 77R-ND peptide caused greater neurobehavioral deficits and neuronal injury compared with 77Q-HAD peptide-implanted animals (p < 0.05).
These observations underscored the potent neuropathogenic properties of Vpr but also indicated viral diversity modulates innate neuroimmunity and neurodegeneration.
PMCID: PMC3123635  PMID: 21645334
14.  Age- and Disease-Dependent HERV-W Envelope Allelic Variation in Brain: Association with Neuroimmune Gene Expression 
PLoS ONE  2011;6(4):e19176.
The glycoprotein, Syncytin-1, is encoded by a human endogenous retrovirus (HERV)-W env gene and is capable of inducing neuroinflammation. The specific allele(s) responsible for Syncytin-1 expression in the brain is uncertain. Herein, HERV-W env diversity together with Syncytin-1 abundance and host immune gene profiles were examined in the nervous system using a multiplatform approach.
HERV-W env sequences were encoded by multiple chromosomal encoding loci in primary human neurons compared with less chromosomal diversity in astrocytes and microglia (p<0.05). HERV-W env RNA sequences cloned from brains of patients with systemic or neurologic diseases were principally derived from chromosomal locus 7q21.2. Within the same specimens, HERV-W env transcript levels were correlated with the expression of multiple proinflammatory genes (p<0.05). Deep sequencing of brain transcriptomes disclosed the env transcripts to be the most abundant HERV-W transcripts, showing greater expression in fetal compared with healthy adult brain specimens. Syncytin-1's expression in healthy brain specimens was derived from multiple encoding loci and linked to distinct immune and developmental gene profiles.
Syncytin-1 expression in the brain during disease was associated with neuroinflammation and was principally encoded by a full length provirus. The present studies also highlighted the diversity in HERV gene expression within the brain and reinforce the potential contributions of HERV expression to neuroinflammatory diseases.
PMCID: PMC3084769  PMID: 21559469
15.  Hepatitis C Virus Core Protein Induces Neuroimmune Activation and Potentiates Human Immunodeficiency Virus-1 Neurotoxicity 
PLoS ONE  2010;5(9):e12856.
Hepatitis C virus (HCV) genomes and proteins are present in human brain tissues although the impact of HIV/HCV co-infection on neuropathogenesis remains unclear. Herein, we investigate HCV infectivity and effects on neuronal survival and neuroinflammation in conjunction with HIV infection.
Human microglia, astrocyte and neuron cultures were infected with cell culture-derived HCV or exposed to HCV core protein with or without HIV-1 infection or HIV-1 Viral Protein R (Vpr) exposure. Host immune gene expression and cell viability were measured. Patch-clamp studies of human neurons were performed in the presence or absence of HCV core protein. Neurobehavioral performance and neuropathology were examined in HIV-1 Vpr-transgenic mice in which stereotaxic intrastriatal implants of HCV core protein were performed.
Principal Findings
HCV-encoded RNA as well as HCV core and non-structural 3 (NS3) proteins were detectable in human microglia and astrocytes infected with HCV. HCV core protein exposure induced expression of pro-inflammatory cytokines including interleukin-1β, interleukin-6 and tumor necrosis factor-α in microglia (p<0.05) but not in astrocytes while increased chemokine (e.g. CXCL10 and interleukin-8) expression was observed in both microglia and astrocytes (p<0.05). HCV core protein modulated neuronal membrane currents and reduced both β-III-tubulin and lipidated LC3-II expression (p<0.05). Neurons exposed to supernatants from HCV core-activated microglia exhibited reduced β-III-tubulin expression (p<0.05). HCV core protein neurotoxicity and interleukin-6 induction were potentiated by HIV-1 Vpr protein (p<0.05). HIV-1 Vpr transgenic mice implanted with HCV core protein showed gliosis, reduced neuronal counts together with diminished LC3 immunoreactivity. HCV core-implanted animals displayed neurobehavioral deficits at days 7 and 14 post-implantation (p<0.05).
HCV core protein exposure caused neuronal injury through suppression of neuronal autophagy in addition to neuroimmune activation. The additive neurotoxic effects of HCV- and HIV-encoded proteins highlight extrahepatic mechanisms by which HCV infection worsens the disease course of HIV infection.
PMCID: PMC2943470  PMID: 20877724
16.  Clinical outcomes and immune benefits of anti-epileptic drug therapy in HIV/AIDS 
BMC Neurology  2010;10:44.
Anti-epileptic drugs (AEDs) are frequently prescribed to persons with HIV/AIDS receiving combination antiretroviral therapy (cART) although the extent of AED use and their interactions with cART are uncertain. Herein, AED usage, associated toxicities and immune consequences were investigated.
HIV replication was analysed in proliferating human T cells during AED exposure. Patients receiving AEDs in a geographically-based HIV care program were assessed using clinical and laboratory variables in addition to assessing AED indication, type, and cumulative exposures.
Valproate suppressed proliferation in vitro of both HIV-infected and uninfected T cells (p <0.05) but AED exposures did not affect HIV production in vitro. Among 1345 HIV/AIDS persons in active care between 2001 and 2007, 169 individuals were exposed to AEDs for the following indications: peripheral neuropathy/neuropathic pain (60%), seizure/epilepsy (24%), mood disorder (13%) and movement disorder (2%). The most frequently prescribed AEDs were calcium channel blockers (gabapentin/pregabalin), followed by sodium channel blockers (phenytoin, carbamazepine, lamotrigine) and valproate. In a nested cohort of 55 AED-treated patients receiving cART and aviremic, chronic exposure to sodium and calcium channel blocking AEDs was associated with increased CD4+ T cell levels (p <0.05) with no change in CD8+ T cell levels over 12 months from the beginning of AED therapy.
AEDs were prescribed for multiple indications without major adverse effects in this population but immune status in patients receiving sodium or calcium channel blocking drugs was improved.
PMCID: PMC2902446  PMID: 20565780
18.  West Nile Virus-Induced Neuroinflammation: Glial Infection and Capsid Protein-Mediated Neurovirulence▿  
Journal of Virology  2007;81(20):10933-10949.
West Nile virus (WNV) infection causes neurological disease at all levels of the neural axis, accompanied by neuroinflammation and neuronal loss, although the underlying mechanisms remain uncertain. Given the substantial activation of neuroinflammatory pathways observed in WNV infection, we hypothesized that WNV-mediated neuroinflammation and cell death occurred through WNV infection of both glia and neurons, which was driven in part by WNV capsid protein expression. Analysis of autopsied neural tissues from humans with WNV encephalomyelitis (WNVE) revealed WNV infection of both neurons and glia. Upregulation of proinflammatory genes, CXCL10, interleukin-1β, and indolamine-2′,3′-deoxygenase with concurrent suppression of the protective astrocyte-specific endoplasmic reticulum stress sensor gene, OASIS (for old astrocyte specifically induced substance), was evident in WNVE patients compared to non-WNVE controls. These findings were supported by increased ex vivo expression of these proinflammatory genes in glia infected by WNV-NY99. WNV infection caused endoplasmic reticulum stress gene induction and apoptosis in neurons but did not affect glial viability. WNV-infected astrocytic cells secreted cytotoxic factors, which caused neuronal apoptosis. The expression of the WNV-NY99 capsid protein in neurons and glia by a Sindbis virus-derived vector (SINrep5-WNVc) caused neuronal death and the release of neurotoxic factors by infected astrocytes, coupled with proinflammatory gene induction and suppression of OASIS. Striatal implantation of SINrep5-WNVC induced neuroinflammation in rats, together with the induction of CXCL10 and diminished OASIS expression, compared to controls. Moreover, magnetic resonance neuroimaging showed edema and tissue injury in the vicinity of the SINrep5-WNVc implantation site compared to controls, which was complemented by neurobehavioral abnormalities in the SINrep5-WNVc-implanted animals. These studies underscore the important interactions between the WNV capsid protein and neuroinflammation in the pathogenesis of WNV-induced neurological disorders.
PMCID: PMC2045515  PMID: 17670819
19.  Factors in AIDS Dementia Complex Trial Design: Results and Lessons from the Abacavir Trial 
PLoS Clinical Trials  2007;2(3):e13.
To determine the efficacy of adding abacavir (Ziagen, ABC) to optimal stable background antiretroviral therapy (SBG) to AIDS dementia complex (ADC) patients and address trial design.
Phase III randomized, double-blind placebo-controlled trial.
Tertiary outpatient clinics.
ADC patients on SBG for ≥8 wk.
Participants were randomized to ABC or matched placebo for 12 wk.
Outcome Measures:
The primary outcome measure was the change in the summary neuropsychological Z score (NPZ). Secondary measures were HIV RNA and the immune activation markers β-2 microglobulin, soluble tumor necrosis factor (TNF) receptor 2, and quinolinic acid.
105 participants were enrolled. The median change in NPZ at week 12 was +0.76 for the ABC + SBG and +0.63 for the SBG groups (p = 0.735). The lack of efficacy was unlikely related to possible limited antiviral efficacy of ABC: at week 12 more ABC than placebo participants had plasma HIV RNA ≤400 copies/mL (p = 0.002). There were, however, other factors. Two thirds of patients were subsequently found to have had baseline resistance to ABC. Second, there was an unanticipated beneficial effect of SBG that extended beyond 8 wk to 5 mo, thereby rendering some of the patients at baseline unstable. Third, there was an unexpectedly large variability in neuropsychological performance that underpowered the study. Fourth, there was a relative lack of activity of ADC: 56% of all patients had baseline cerebrospinal fluid (CSF) HIV-1 RNA <100 copies/mL and 83% had CSF β-2 microglobulin <3 nmol/L at baseline.
The addition of ABC to SBG for ADC patients was not efficacious, possibly because of the inefficacy of ABC per se, baseline drug resistance, prolonged benefit from existing therapy, difficulties with sample size calculations, and lack of disease activity. Assessment of these trial design factors is critical in the design of future ADC trials.
Editorial Commentary
Background: AIDS dementia complex (ADC) was first identified early in the HIV epidemic and at that time affected a substantial proportion of patients with AIDS. Patients with ADC experience dementia as well as disordered behavior and problems with movement and balance. ADC is now much less common in locations where patients have access to HAART (highly active antiretroviral therapy), consisting of combinations of several drugs that attack the virus at different stages of its life cycle. At present, however, there are no generally accepted guidelines for the best treatment of people with ADC. It has been thought for some time that the best treatment regimens for people with ADC would include drugs that cross the barrier between blood and brain well. Shortly following the introduction of HAART, a trial was carried out to find out whether adding one particular drug, abacavir, to existing combinations of drugs would be beneficial in people with ADC. This drug is known to cross the barrier between the blood and brain. The trial enrolled HIV-positive individuals with mild to moderate ADC and who were already receiving antiretroviral drug treatment. 105 participants were assigned at random to receive either high-dose abacavir or a placebo, in addition to their existing therapy. The primary outcome of the trial was a summary of performance on a set of different tests, designed to evaluate cognitive, behavior, and movement skills, at 12 weeks. Other outcomes included levels of HIV RNA (viral load) in fluid around the brain, as well as other neurological evaluations, and the level of HIV RNA and CD4+ T cells (the cells infected by HIV) in blood.
What this trial shows: When comparing the change in performance scores for individuals randomized to either abacavir or placebo, the results showed an improvement in scores for both groups, but no significant difference in improvement between the two groups. Similarly, the levels of HIV RNA in the cerebrospinal fluid did not differ between the two groups being compared, and other neurological tests did not show any differences between the two groups. However, at 12 weeks, patients receiving abacavir were more likely to have low levels of HIV RNA in their blood, suggesting that abacavir was active against the virus, but this did not translate into an additional improvement of these patients' dementia. The overall rates of adverse events were roughly comparable between the two groups in the trial, although participants receiving abacavir were more likely to experience certain types of events, such as nausea.
Strengths and limitations: The trial was appropriately randomized and controlled, using central telephone procedures for randomizing participants and subsequent blinding of patients and trial investigators. These procedures help minimize the chance of bias in assigning participants to the different arms as well as in the subsequent performance of individuals within the trial and the assessment of their outcomes. Limitations in the study design have been identified. One limitation is that individuals enrolled into the trial may not in fact have been receiving their existing HAART regimen for long enough to experience its optimal effect, and therefore the improvement seen in both groups could have resulted from an ongoing response to their existing regimen. It is also possible that patients improved in their test scores over the course of the trial simply because they became more familiar with the tests and not because their condition improved. This is a problem in all such trials that try to improve mental function. Finally, a limitation may have been the inclusion of patients who did not have active disease leading to worsening dementia.
Contribution to the evidence: The findings from this trial suggest that adding high-dose abacavir to existing HAART is not beneficial for patients with ADC. However, the trial provides several insights into the way that future studies of this type can be done, and which typically pose a number of challenging design problems. In particular, sensitive markers are needed that will allow researchers to monitor progression of ADC and patients' response to therapy.
PMCID: PMC1845158  PMID: 17401456
20.  Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis 
The proteinase-activated receptors (PARs) are widely recognized for their modulatory properties of inflammation and neurodegeneration. We investigated the role of PAR2 in the pathogenesis of multiple sclerosis (MS) in humans and experimental autoimmune encephalomyelitis (EAE) in mice. PAR2 expression was increased on astrocytes and infiltrating macrophages in human MS and murine EAE central nervous system (CNS) white matter (P < 0.05). Macrophages and astrocytes from PAR2 wild-type (WT) and knockout (KO) mice exhibited differential immune gene expression with PAR2 KO macrophages showing significantly higher interleukin 10 production after lipopolysaccharide stimulation (P < 0.001). PAR2 activation in macrophages resulted in the release of soluble oligodendrocyte cytotoxins (P < 0.01). Myelin oligodendrocyte glycoprotein–induced EAE caused more severe inflammatory gene expression in the CNS of PAR2 WT animals (P < 0.05), together with enhanced T cell proliferation and interferon γ production (P < 0.05), compared with KO littermates. Indeed, PAR2 WT animals showed markedly greater microglial activation and T lymphocyte infiltration accompanied by worsened demyelination and axonal injury in the CNS compared with their PAR2 KO littermates. Enhanced neuropathological changes were associated with a more severe progressive relapsing disease phenotype (P < 0.001) in WT animals. These findings reveal previously unreported pathogenic interactions between CNS PAR2 expression and neuroinflammation with ensuing demyelination and axonal injury.
PMCID: PMC2118197  PMID: 16476770
21.  Human Immunodeficiency Virus Type 1 Envelope-Mediated Neuronal Death: Uncoupling of Viral Replication and Neurotoxicity 
Journal of Virology  2003;77(12):6899-6912.
Although brain tissue from patients with human immunodeficiency virus (HIV) and/or AIDS is consistently infected by HIV type 1 (HIV-1), only 20 to 30% of patients exhibit clinical or neuropathological evidence of brain injury. Extensive HIV-1 sequence diversity is present in the brain, which may account in part for the variability in the occurrence of HIV-induced brain disease. Neurological injury caused by HIV-1 is mediated directly by neurotoxic viral proteins or indirectly through excess production of host molecules by infected or activated glial cells. To elucidate the relationship between HIV-1 infection and neuronal death, we examined the neurotoxic effects of supernatants from human 293T cells or macrophages expressing recombinant HIV-1 virions or gp120 proteins containing the V1V3 or C2V3 envelope region from non-clade B, brain-derived HIV-1 sequences. Neurotoxicity was measured separately as apoptosis or total neuronal death, with apoptosis representing 30 to 80% of the total neuron death observed, depending on the individual virus. In addition, neurotoxicity was dependent on expression of HIV-1 gp120 and could be blocked by anti-gp120 antibodies, as well as by antibodies to the human CCR5 and CXCR4 chemokine receptors. Despite extensive sequence diversity in the recombinant envelope region (V1V3 or C2V3), there was limited variation in the neurotoxicity induced by supernatants from transfected 293T cells. Conversely, supernatants from infected macrophages caused a broader range of neurotoxicity levels that depended on each virus and was independent of the replicative ability of the virus. These findings underscore the importance of HIV-1 envelope protein expression in neurotoxic pathways associated with HIV-induced brain disease and highlight the envelope as a target for neuroprotective therapeutic interventions.
PMCID: PMC156161  PMID: 12768009
23.  Productive Infection of Human Peripheral Blood Mononuclear Cells by Feline Immunodeficiency Virus: Implications for Vector Development 
Journal of Virology  1999;73(3):2491-2498.
Feline immunodeficiency virus (FIV) is a lentivirus causing immune suppression and neurological disease in cats. Like primate lentiviruses, FIV utilizes the chemokine receptor CXCR4 for infection. In addition, FIV gene expression has been demonstrated in immortalized human cell lines. To investigate the extent and mechanism by which FIV infected primary and immortalized human cell lines, we compared the infectivity of two FIV strains, V1CSF and Petaluma, after cell-free infection. FIV genome was detected in infected human peripheral blood mononuclear cells (PBMC) and macrophages at 21 and 14 days postinfection, respectively. Flow cytometry analysis of FIV-infected human PBMC indicated that antibodies to FIV p24 recognized 12% of the cells. Antibodies binding the CCR3 chemokine receptor maximally inhibited infection of human PBMC by both FIV strains compared to antibodies to CXCR4 or CCR5. Reverse transcriptase levels increased in FIV-infected human PBMC, with detection of viral titers of 101.3 to 102.1 50% tissue culture infective doses/106 cells depending on the FIV strain examined. Cell death in human PBMC infected with either FIV strain was significantly elevated relative to uninfected control cultures. These findings indicate that FIV can productively infect primary human cell lines and that viral strain specificity should be considered in the development of an FIV vector for gene therapy.
PMCID: PMC104496  PMID: 9971834
24.  V3 Recombinants Indicate a Central Role for CCR5 as a Coreceptor in Tissue Infection by Human Immunodeficiency Virus Type 1 
Journal of Virology  1999;73(3):2350-2358.
Binding of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 to both CD4 and one of several chemokine receptors (coreceptors) permits entry of virus into target cells. Infection of tissues may establish latent viral reservoirs as well as cause direct pathologic effects that manifest as clinical disease such as HIV-associated dementia. We sought to identify the critical coreceptors recognized by HIV-1 tissue-derived strains as well as to correlate these coreceptor preferences with site of infection and dementia diagnosis. To reconstitute coreceptor use, we cloned HIV-1 envelope V3 sequences encoding the primary determinants of coreceptor specificity from 13 brain-derived and 6 colon-derived viruses into an isogenic (NL4-3) viral background. All V3 recombinants utilized the chemokine receptor CCR5 uniformly and efficiently as a coreceptor but not CXCR4, BOB/GPR15, or Bonzo/STRL33. Other receptors such as CCR3, CCR8, and US28 were inefficiently and variably used as coreceptors by various envelopes. CCR5 without CD4 present did not allow for detectable infection by any of the tested recombinants. In contrast to the pathogenic switch in coreceptor specificity frequently observed in comparisons of blood-derived viruses early after HIV-1 seroconversion and after onset of AIDS, the characteristics of these V3 recombinants suggest that CCR5 is a primary coreceptor for brain- and colon-derived viruses regardless of tissue source or diagnosis of dementia. Therefore, tissue infection may not depend significantly on viral envelope quasispeciation to broaden coreceptor range but rather selects for CCR5 use throughout disease progression.
PMCID: PMC104480  PMID: 9971818

Results 1-24 (24)