PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations 
Brain  2011;134(9):2595-2609.
Accumulation of the DNA/RNA binding protein fused in sarcoma as cytoplasmic inclusions in neurons and glial cells is the pathological hallmark of all patients with amyotrophic lateral sclerosis with mutations in FUS as well as in several subtypes of frontotemporal lobar degeneration, which are not associated with FUS mutations. The mechanisms leading to inclusion formation and fused in sarcoma-associated neurodegeneration are only poorly understood. Because fused in sarcoma belongs to a family of proteins known as FET, which also includes Ewing’s sarcoma and TATA-binding protein-associated factor 15, we investigated the potential involvement of these other FET protein family members in the pathogenesis of fused in sarcoma proteinopathies. Immunohistochemical analysis of FET proteins revealed a striking difference among the various conditions, with pathology in amyotrophic lateral sclerosis with FUS mutations being labelled exclusively for fused in sarcoma, whereas fused in sarcoma-positive inclusions in subtypes of frontotemporal lobar degeneration also consistently immunostained for TATA-binding protein-associated factor 15 and variably for Ewing’s sarcoma. Immunoblot analysis of proteins extracted from post-mortem tissue of frontotemporal lobar degeneration with fused in sarcoma pathology demonstrated a relative shift of all FET proteins towards insoluble protein fractions, while genetic analysis of the TATA-binding protein-associated factor 15 and Ewing’s sarcoma gene did not identify any pathogenic variants. Cell culture experiments replicated the findings of amyotrophic lateral sclerosis with FUS mutations by confirming the absence of TATA-binding protein-associated factor 15 and Ewing’s sarcoma alterations upon expression of mutant fused in sarcoma. In contrast, all endogenous FET proteins were recruited into cytoplasmic stress granules upon general inhibition of Transportin-mediated nuclear import, mimicking the findings in frontotemporal lobar degeneration with fused in sarcoma pathology. These results allow a separation of fused in sarcoma proteinopathies caused by FUS mutations from those without a known genetic cause based on neuropathological features. More importantly, our data imply different pathological processes underlying inclusion formation and cell death between both conditions; the pathogenesis in amyotrophic lateral sclerosis with FUS mutations appears to be more restricted to dysfunction of fused in sarcoma, while a more global and complex dysregulation of all FET proteins is involved in the subtypes of frontotemporal lobar degeneration with fused in sarcoma pathology.
doi:10.1093/brain/awr201
PMCID: PMC3170539  PMID: 21856723
FUS; TAF15; EWS; amyotrophic lateral sclerosis; frontotemporal dementia
2.  High-resolution Whole-Genome Analysis of Skull Base Chordomas Implicates FHIT Loss in Chordoma Pathogenesis12 
Neoplasia (New York, N.Y.)  2012;14(9):788-798.
Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22%) than previously reported for sacral chordoma. At a similar frequency (21%), we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT) protein expression in 98% of sacral chordomas and 67%of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm.
PMCID: PMC3459274  PMID: 23019410
3.  Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions 
Van Deerlin, Vivianna M. | Sleiman, Patrick M. A. | Martinez-Lage, Maria | Chen-Plotkin, Alice | Wang, Li-San | Graff-Radford, Neill R | Dickson, Dennis W. | Rademakers, Rosa | Boeve, Bradley F. | Grossman, Murray | Arnold, Steven E. | Mann, David M.A. | Pickering-Brown, Stuart M. | Seelaar, Harro | Heutink, Peter | van Swieten, John C. | Murrell, Jill R. | Ghetti, Bernardino | Spina, Salvatore | Grafman, Jordan | Hodges, John | Spillantini, Maria Grazia | Gilman, Sid' | Lieberman, Andrew P. | Kaye, Jeffrey A. | Woltjer, Randall L. | Bigio, Eileen H | Mesulam, Marsel | al-Sarraj, Safa | Troakes, Claire | Rosenberg, Roger N. | White, Charles L. | Ferrer, Isidro | Lladó, Albert | Neumann, Manuela | Kretzschmar, Hans A. | Hulette, Christine Marie | Welsh-Bohmer, Kathleen A. | Miller, Bruce L | Alzualde, Ainhoa | de Munain, Adolfo Lopez | McKee, Ann C. | Gearing, Marla | Levey, Allan I. | Lah, James J. | Hardy, John | Rohrer, Jonathan D. | Lashley, Tammaryn | Mackenzie, Ian R.A. | Feldman, Howard H. | Hamilton, Ronald L. | Dekosky, Steven T. | van der Zee, Julie | Kumar-Singh, Samir | Van Broeckhoven, Christine | Mayeux, Richard | Vonsattel, Jean Paul G. | Troncoso, Juan C. | Kril, Jillian J | Kwok, John B.J. | Halliday, Glenda M. | Bird, Thomas D. | Ince, Paul G. | Shaw, Pamela J. | Cairns, Nigel J. | Morris, John C. | McLean, Catriona Ann | DeCarli, Charles | Ellis, William G. | Freeman, Stefanie H. | Frosch, Matthew P. | Growdon, John H. | Perl, Daniel P. | Sano, Mary | Bennett, David A. | Schneider, Julie A. | Beach, Thomas G. | Reiman, Eric M. | Woodruff, Bryan K. | Cummings, Jeffrey | Vinters, Harry V. | Miller, Carol A. | Chui, Helena C. | Alafuzoff, Irina | Hartikainen, Päivi | Seilhean, Danielle | Galasko, Douglas | Masliah, Eliezer | Cotman, Carl W. | Tuñón, M. Teresa | Martínez, M. Cristina Caballero | Munoz, David G. | Carroll, Steven L. | Marson, Daniel | Riederer, Peter F. | Bogdanovic, Nenad | Schellenberg, Gerard D. | Hakonarson, Hakon | Trojanowski, John Q. | Lee, Virginia M.-Y.
Nature genetics  2010;42(3):234-239.
Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA binding protein (TDP-43) inclusions (FTLD-TDP)1. FTLD-TDP is frequently familial resulting from progranulin (GRN) mutations. We assembled an international collaboration to identify susceptibility loci for FTLD-TDP, using genome-wide association (GWA). We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium (LD) block on 7p21 that contains TMEM106B in a GWA study (GWAS) on 515 FTLD-TDP cases. Three SNPs retained genome-wide significance following Bonferroni correction; top SNP rs1990622 (P=1.08×10−11; odds ratio (OR) minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P=2×10−4). TMEM106B variants may confer risk by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in patients with GRN mutations. Our data implicate TMEM106B as a strong risk factor for FTLD-TDP suggesting an underlying pathogenic mechanism.
doi:10.1038/ng.536
PMCID: PMC2828525  PMID: 20154673
4.  FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration 
Acta neuropathologica  2010;120(1):33-41.
Through an international consortium, we have collected 37 tau- and TAR DNA-binding protein 43 (TDP-43)-negative frontotemporal lobar degeneration (FTLD) cases, and present here the first comprehensive analysis of these cases in terms of neuropathology, genetics, demographics and clinical data. 92% (34/37) had fused in sarcoma (FUS) protein pathology, indicating that FTLD-FUS is an important FTLD subtype. This FTLD-FUS collection specifically focussed on aFTLD-U cases, one of three recently defined subtypes of FTLD-FUS. The aFTLD-U subtype of FTLD-FUS is characterised clinically by behavioural variant frontotemporal dementia (bvFTD) and has a particularly young age of onset with a mean of 41 years. Further, this subtype had a high prevalence of psychotic symptoms (36% of cases) and low prevalence of motor symptoms (3% of cases). We did not find FUS mutations in any aFTLD-U case. To date, the only subtype of cases reported to have ubiquitin-positive but tau-, TDP-43- and FUS-negative pathology, termed FTLD-UPS, is the result of charged multivesicular body protein 2B gene (CHMP2B) mutation. We identified three FTLD-UPS cases, which are negative for CHMP2B mutation, suggesting that the full complement of FTLD pathologies is yet to be elucidated.
doi:10.1007/s00401-010-0698-6
PMCID: PMC2887939  PMID: 20490813
FTLD; FUS; FTLD-UPS; Frontotemporal; FTD
5.  FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration 
Acta Neuropathologica  2010;120(1):33-41.
Through an international consortium, we have collected 37 tau- and TAR DNA-binding protein 43 (TDP-43)-negative frontotemporal lobar degeneration (FTLD) cases, and present here the first comprehensive analysis of these cases in terms of neuropathology, genetics, demographics and clinical data. 92% (34/37) had fused in sarcoma (FUS) protein pathology, indicating that FTLD-FUS is an important FTLD subtype. This FTLD-FUS collection specifically focussed on aFTLD-U cases, one of three recently defined subtypes of FTLD-FUS. The aFTLD-U subtype of FTLD-FUS is characterised clinically by behavioural variant frontotemporal dementia (bvFTD) and has a particularly young age of onset with a mean of 41 years. Further, this subtype had a high prevalence of psychotic symptoms (36% of cases) and low prevalence of motor symptoms (3% of cases). We did not find FUS mutations in any aFTLD-U case. To date, the only subtype of cases reported to have ubiquitin-positive but tau-, TDP-43- and FUS-negative pathology, termed FTLD-UPS, is the result of charged multivesicular body protein 2B gene (CHMP2B) mutation. We identified three FTLD-UPS cases, which are negative for CHMP2B mutation, suggesting that the full complement of FTLD pathologies is yet to be elucidated.
doi:10.1007/s00401-010-0698-6
PMCID: PMC2887939  PMID: 20490813
FTLD; FUS; FTLD-UPS; Frontotemporal; FTD
6.  Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration 
Acta Neuropathologica  2007;114(1):5-22.
The aim of this study was to improve the neuropathologic recognition and provide criteria for the pathological diagnosis in the neurodegenerative diseases grouped as frontotemporal lobar degeneration (FTLD); revised criteria are proposed. Recent advances in molecular genetics, biochemistry, and neuropathology of FTLD prompted the Midwest Consortium for Frontotemporal Lobar Degeneration and experts at other centers to review and revise the existing neuropathologic diagnostic criteria for FTLD. The proposed criteria for FTLD are based on existing criteria, which include the tauopathies [FTLD with Pick bodies, corticobasal degeneration, progressive supranuclear palsy, sporadic multiple system tauopathy with dementia, argyrophilic grain disease, neurofibrillary tangle dementia, and FTD with microtubule-associated tau (MAPT) gene mutation, also called FTD with parkinsonism linked to chromosome 17 (FTDP-17)]. The proposed criteria take into account new disease entities and include the novel molecular pathology, TDP-43 proteinopathy, now recognized to be the most frequent histological finding in FTLD. TDP-43 is a major component of the pathologic inclusions of most sporadic and familial cases of FTLD with ubiquitin-positive, tau-negative inclusions (FTLD-U) with or without motor neuron disease (MND). Molecular genetic studies of familial cases of FTLD-U have shown that mutations in the progranulin (PGRN) gene are a major genetic cause of FTLD-U. Mutations in valosin-containing protein (VCP) gene are present in rare familial forms of FTD, and some families with FTD and/or MND have been linked to chromosome 9p, and both are types of FTLD-U. Thus, familial TDP-43 proteinopathy is associated with defects in multiple genes, and molecular genetics is required in these cases to correctly identify the causative gene defect. In addition to genetic heterogeneity amongst the TDP-43 proteinopathies, there is also neuropathologic heterogeneity and there is a close relationship between genotype and FTLD-U sub-type. In addition to these recent significant advances in the neuropathology of FTLD-U, novel FTLD entities have been further characterized, including neuronal intermediate filament inclusion disease. The proposed criteria incorporate up-to-date neuropathology of FTLD in the light of recent immunohistochemical, biochemical, and genetic advances. These criteria will be of value to the practicing neuropathologist and provide a foundation for clinical, clinico-pathologic, mechanistic studies and in vivo models of pathogenesis of FTLD.
doi:10.1007/s00401-007-0237-2
PMCID: PMC2827877  PMID: 17579875
Frontotemporal dementia; Semantic dementia; Progressive non-Xuent aphasia; Frontotemporal lobar degeneration; Motor neuron disease; Tauopathy; Ubiquitin; TDP-43 proteinopathy; Progranulin; Valosin-containing protein; Charged multivesicular body protein 2B; Neuronal intermediate filament inclusion disease; Neuropathologic diagnosis
7.  Clinical and Immunologic Features of an Atypical Intracranial Mycobacterium avium Complex (MAC) Infection Compared with Those of Pulmonary MAC Infections▿  
Clinical and Vaccine Immunology : CVI  2008;15(10):1580-1589.
Members of the Mycobacterium avium complex (MAC) may cause chronic pulmonary infections in otherwise healthy elderly persons but rarely invade parts of the body outside of the lungs in immunocompetent hosts. We present a case of an isolated intracranial MAC infection in an apparently immunocompetent individual and review previous reports. We studied the T-cell and monocyte responses in healthy volunteers, individuals with a pulmonary MAC infection, and one individual with an isolated intracranial MAC infection. Genomic DNA from the individual with the brain MAC infection was studied for gamma interferon (IFN-γ) receptor mutations. Individuals with localized pulmonary MAC infections showed increased activation of monocytes and enhanced monocyte and T-cell tumor necrosis factor alpha (TNF-α) production in response to lipopolysaccharide and MAC antigens but defects in T-cell IFN-γ secretion. The individual with an intracranial MAC infection showed a lack of monocyte activation and deficiencies in both monocyte and T-cell TNF-α production and monocyte interleukin-12 (IL-12) production but had preserved T-cell IFN-γ production. Mutations or deletions in the IFN-γ receptor were not detected in the individual with the intracranial MAC infection. Our data suggest that distinct immune defects characterize two different manifestations of MAC infection. A relative defect in IFN-γ production in response to MAC may predispose an individual to localized but partially controlled lung disease, whereas defects leading to reduced IL-12 and TNF-α production may allow the dissemination of MAC. Further studies delineating the potential role of TNF-α in limiting the spread of MAC outside the lung are warranted.
doi:10.1128/CVI.00173-08
PMCID: PMC2565932  PMID: 18701648
8.  Sarcoidosis complicated by cirrhosis and hepatopulmonary syndrome 
Sarcoidosis is a multisystem disorder commonly affecting the lungs, but also the liver, with cirrhosis and portal hypertension occurring in fewer than 1% of cases. Although hepatopulmonary syndrome (HPS) is seen in 15% to 20% of patients with cirrhosis of varying causes, it has rarely been associated with sarcoidosis. Also, although a brain abscess is not uncommon in patients with discrete pulmonary arteriovenous malformations, it is rarely seen in patients with the much smaller intrapulmonary vascular dilations that characterize HPS. A patient with an unusual series of uncommon sarcoidosis complications, including cirrhosis with HPS, brain abscess and finally Nocardia meningitis, is reported. The possibility of HPS should be considered in sarcoidosis patients with liver involvement, if gas-exchange abnormalities are out of proportion to the degree of lung involvement. These patients may also be susceptible to a cerebral abscess by paradoxical embolization, and to opportunistic infections due to cirrhosis.
PMCID: PMC2677933  PMID: 18437252
Cirrhosis; Liver failure; Pulmonary circulation; Sarcoidosis

Results 1-8 (8)