PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (215)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors in poultry 
Antibiotics have been included in the formulation of feed for livestock production for more than 40 years as a strategy to improve feed conversion rates and to reduce costs. The use of antimicrobials as growth-promoting factors (AGP) in sub-therapeutic doses for long periods is particularly favorable for the selection of antimicrobial resistant microorganisms. In the last years, global concern about development of antimicrobial resistance and transference of resistance genes from animal to human strains has been rising. Removal of AGP from animal diets involves tremendous pressure on the livestock and poultry farmers, one of the main consequences being a substantial increase in the incidence of infectious diseases with the associated increase in the use of antibiotics for therapy, and concomitantly, economic cost. Therefore, alternatives to AGP are urgently needed. The challenge is to implement new alternatives without affecting the production performances of livestock and avoiding the increase of antimicrobial resistant microorganisms. Plant extracts and purified derived substances are showing promising results for animal nutrition, either from their efficacy as well as from an economical point of view. Tannins are plant derived compounds that are being successfully used as additives in poultry feed to control diseases and to improve animal performance. Successful use of any of these extracts as feed additives must ensure a product of consistent quality in enough quantity to fulfill the actual requirements of the poultry industry. Chestnut (hydrolysable) and Quebracho (condensed) tannins are probably the most readily available commercial products that are covering those needs. The present report intends to analyze the available data supporting their use.
doi:10.3389/fmicb.2014.00118
PMCID: PMC3973907  PMID: 24723916
tannins; antibiotics; poultry; growth promoting factors; necrotic enteritis; plant extracts; animal health
2.  Sexually Dimorphic Body Color Is Regulated by Sex-Specific Expression of Yellow Gene in Ponerine Ant, Diacamma Sp 
PLoS ONE  2014;9(3):e92875.
Most hymenopteran species exhibit conspicuous sexual dimorphism due to ecological differences between the sexes. As hymenopteran genomes, under the haplodiploid genetic system, exhibit quantitative differences between sexes while remaining qualitatively identical, sexual phenotypes are assumed to be expressed through sex-specific gene usage. In the present study, the molecular basis for expression of sexual dimorphism in a queenless ant, Diacamma sp., which exhibits a distinct color dimorphism, was examined. Worker females of the species appear bluish-black, while winged males exhibit a yellowish-brown body color. Initially, observations of the pigmentation processes during pupal development revealed that black pigmentation was present in female pupae but not in males, suggesting that sex-specific melanin synthesis was responsible for the observed color dimorphism. Therefore, five orthologs of the genes involved in the insect melanin synthesis (yellow, ebony, tan, pale and dopa decarboxylase) were subcloned and their spatiotemporal expression patterns were examined using real-time quantitative RT-PCR. Of the genes examined, yellow, which plays a role in black melanin synthesis in insects, was expressed at higher levels in females than in males throughout the entire body during the pupal stage. RNA interference of yellow was then carried out in order to determine the gene function, and produced females with a more yellowish, brighter body color similar to that of males. It was concluded that transcriptional regulation of yellow was responsible for the sexual color dimorphism observed in this species.
doi:10.1371/journal.pone.0092875
PMCID: PMC3965500  PMID: 24667821
3.  Splenic Stromal Cells from Aged Mice Produce Higher Levels of IL-6 Compared to Young Mice 
Mediators of Inflammation  2014;2014:826987.
Inflamm-aging indicates the chronic inflammatory state resulting from increased secretion of proinflammatory cytokines and mediators such as IL-6 in the elderly. Our principle objective was to identify cell types that were affected with aging concerning IL-6 secretion in the murine model. We compared IL-6 production in spleen cells from both young and aged mice and isolated several types of cells from spleen and investigated IL-6 mRNA expression and protein production. IL-6 protein productions in cultured stromal cells from aged mice spleen were significantly high compared to young mice upon LPS stimulation. IL-6 mRNA expression level of freshly isolated stromal cells from aged mice was high compared to young mice. Furthermore, stromal cells of aged mice highly expressed IL-6 mRNA after LPS injection in vivo. These results suggest that stromal cells play a role in producing IL-6 in aged mice and imply that they contribute to the chronic inflammatory condition in the elderly.
doi:10.1155/2014/826987
PMCID: PMC3960767
4.  A Thermoacidophile-Specific Protein Family, DUF3211, Functions as a Fatty Acid Carrier with Novel Binding Mode 
Journal of Bacteriology  2013;195(17):4005-4012.
STK_08120 is a member of the thermoacidophile-specific DUF3211 protein family from Sulfolobus tokodaii strain 7. Its molecular function remains obscure, and sequence similarities for obtaining functional remarks are not available. In this study, the crystal structure of STK_08120 was determined at 1.79-Å resolution to predict its probable function using structure similarity searches. The structure adopts an α/β structure of a helix-grip fold, which is found in the START domain proteins with cavities for hydrophobic substrates or ligands. The detailed structural features implied that fatty acids are the primary ligand candidates for STK_08120, and binding assays revealed that the protein bound long-chain saturated fatty acids (>C14) and their trans-unsaturated types with an affinity equal to that for major fatty acid binding proteins in mammals and plants. Moreover, the structure of an STK_08120-myristic acid complex revealed a unique binding mode among fatty acid binding proteins. These results suggest that the thermoacidophile-specific protein family DUF3211 functions as a fatty acid carrier with a novel binding mode.
doi:10.1128/JB.00432-13
PMCID: PMC3754605  PMID: 23836863
5.  Comprehensive Behavioral Analysis of Cluster of Differentiation 47 Knockout Mice 
PLoS ONE  2014;9(2):e89584.
Cluster of differentiation 47 (CD47) is a member of the immunoglobulin superfamily which functions as a ligand for the extracellular region of signal regulatory protein α (SIRPα), a protein which is abundantly expressed in the brain. Previous studies, including ours, have demonstrated that both CD47 and SIRPα fulfill various functions in the central nervous system (CNS), such as the modulation of synaptic transmission and neuronal cell survival. We previously reported that CD47 is involved in the regulation of depression-like behavior of mice in the forced swim test through its modulation of tyrosine phosphorylation of SIRPα. However, other potential behavioral functions of CD47 remain largely unknown. In this study, in an effort to further investigate functional roles of CD47 in the CNS, CD47 knockout (KO) mice and their wild-type littermates were subjected to a battery of behavioral tests. CD47 KO mice displayed decreased prepulse inhibition, while the startle response did not differ between genotypes. The mutants exhibited slightly but significantly decreased sociability and social novelty preference in Crawley’s three-chamber social approach test, whereas in social interaction tests in which experimental and stimulus mice have direct contact with each other in a freely moving setting in a novel environment or home cage, there were no significant differences between the genotypes. While previous studies suggested that CD47 regulates fear memory in the inhibitory avoidance test in rodents, our CD47 KO mice exhibited normal fear and spatial memory in the fear conditioning and the Barnes maze tests, respectively. These findings suggest that CD47 is potentially involved in the regulation of sensorimotor gating and social behavior in mice.
doi:10.1371/journal.pone.0089584
PMCID: PMC3933641  PMID: 24586890
6.  Increased Behavioral and Neuronal Responses to a Hallucinogenic Drug in PACAP Heterozygous Mutant Mice 
PLoS ONE  2014;9(2):e89153.
Accumulating evidence from human genetic studies implicates the pituitary adenylate cyclase-activating polypeptide (PACAP) gene as a risk factor for psychiatric disorders, including schizophrenia and stress-related diseases. Mice with homozygous disruption of the PACAP gene display profound behavioral and neurological abnormalities that are ameliorated with the atypical antipsychotic and dopamine D2 and serotonin (5-HT)2 antagonist risperidone and the 5-HT2 receptor antagonist ritanserin; however, the underlying mechanisms remain unknown. Here, we investigated if PACAP heterozygous mutant (PACAP+/−) mice, which appear behaviorally normal, are vulnerable to aversive stimuli. PACAP+/− mice were administered a 5-HT2 receptor agonist, (±)-2,5-dimethoxy-4-iodoamphetamine (DOI), a hallucinogenic drug, and their responses were compared with the littermate wild-type mice. After DOI injection, PACAP+/− mice showed increased head-twitch responses, while their behavior was normal after saline. DOI induced deficits in sensorimotor gating, as determined by prepulse inhibition, specifically in PACAP+/− mice. However, other 5-HT2 receptor-dependent responses, such as corticosterone release and hypothermia, were similarly observed in PACAP+/− and wild-type mice. c-Fos expression analysis, performed in various brain regions, revealed that the DOI-induced increase in the number of c-Fos-positive cells was more pronounced in 5-HT2A receptor-negative cells in the somatosensory cortex in PACAP+/− mice compared with wild-type mice. These results indicate that PACAP+/− mice exhibit specific vulnerability to DOI-induced deficits in cortical sensory function, such as exaggerated head-twitch responses and sensorimotor gating deficits. Our findings provide insight into the neural mechanisms underlying impaired behavioral responses in which 5-HT2 receptors are implicated.
doi:10.1371/journal.pone.0089153
PMCID: PMC3930680  PMID: 24586556
7.  Schizophrenia-Relevant Behavioral Testing in Rodent Models: A Uniquely Human Disorder? 
Biological psychiatry  2006;59(12):1198-1207.
Animal models are extremely useful tools in defining pathogenesis and treatment of human disease. Creating adequate animal models of complex neuropsychiatric disorders such as schizophrenia represents a particularly difficult challenge. In the case of schizophrenia, little is certain regarding the etiology or pathophysiology of the human disease. In addition, many symptoms of the disorder are difficult to measure directly in rodents. These challenges have not daunted neuroscientists who are capitalizing on even subtle overlaps between this uniquely human disorder and rodent behavior. In this perspective, we detail the features of ideal animal models of schizophrenia, the potential utility of such models, and the rodent behaviors used to model certain aspects of schizophrenia. The development of such models will provide critical tools to understand the pathogenesis of schizophrenia and novel insights into therapeutic approaches to this complex disorder.
doi:10.1016/j.biopsych.2006.05.008
PMCID: PMC3928106  PMID: 16797265
Schizophrenia; animal model; psychosis; behavior; knockout; genetic
8.  Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders 
Molecular Brain  2014;7:12.
Background
We have previously identified BRINP (BMP/RA-inducible neural-specific protein-1, 2, 3) family genes that possess the ability to suppress cell cycle progression in neural stem cells. Of the three family members, BRINP1 is the most highly expressed in various brain regions, including the hippocampus, in adult mice and its expression in dentate gyrus (DG) is markedly induced by neural activity. In the present study, we generated BRINP1-deficient (KO) mice to clarify the physiological functions of BRINP1 in the nervous system.
Results
Neurogenesis in the subgranular zone of dentate gyrus was increased in BRINP1-KO mice creating a more immature neuronal population in granule cell layer. The number of parvalbumin expressing interneuron in hippocampal CA1 subregion was also increased in BRINP1-KO mice. Furthermore, BRINP1-KO mice showed abnormal behaviors with increase in locomotor activity, reduced anxiety-like behavior, poor social interaction, and slight impairment of working memory, all of which resemble symptoms of human psychiatric disorders such as schizophrenia and attention–deficit/hyperactivity disorder (ADHD).
Conclusions
Absence of BRINP1 causes deregulation of neurogenesis and impairments of neuronal differentiation in adult hippocampal circuitry. Abnormal behaviors comparable to those of human psychiatric disorders such as hyperactivity and poor social behavior were observed in BRINP1-KO mice. These abnormal behaviors could be caused by alteration of hippocampal circuitry as a consequence of the lack of BRINP1.
doi:10.1186/1756-6606-7-12
PMCID: PMC3928644  PMID: 24528488
Hippocampal neurogenesis; Interneuron; Behavior; Psychiatric disorder
9.  Structural basis of stereospecific reduction by quinuclidinone reductase 
AMB Express  2014;4:6.
Chiral molecule (R)-3-quinuclidinol, a valuable compound for the production of various pharmaceuticals, is efficiently synthesized from 3-quinuclidinone by using NADPH-dependent 3-quinuclidinone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of RrQR and the structure-based mutational analysis. The enzyme forms a tetramer, in which the core of each protomer exhibits the α/β Rossmann fold and contains one molecule of NADPH, whereas the characteristic substructures of a small lobe and a variable loop are localized around the substrate-binding site. Modeling and mutation analyses of the catalytic site indicated that the hydrophobicity of two residues, I167 and F212, determines the substrate-binding orientation as well as the substrate-binding affinity. Our results revealed that the characteristic substrate-binding pocket composed of hydrophobic amino acid residues ensures substrate docking for the stereospecific reaction of RrQR in spite of its loose interaction with the substrate.
doi:10.1186/2191-0855-4-6
PMCID: PMC3922912  PMID: 24507746
Crystal structure; NADPH-dependent enzyme; Asymmetric reduction; 3-Quinuclidinone reductase; (R)-3-quinuclidinol
10.  Is a Switch From Insulin Therapy to Liraglutide Possible in Japanese Type 2 Diabetes Mellitus Patients? 
Background
To evaluate the efficacy of switching from insulin to the GLP-1 receptor agonist liraglutide in type 2 diabetes mellitus patients.
Methods
The subjects were 231 outpatients with type 2 diabetes mellitus being treated with liraglutide for the first time. For 161 patients, liraglutide was continued for 24 weeks (continuation group), and for 70 patients, liraglutide was discontinued before 24 weeks (discontinuation group). Fasting and postprandial blood glucose levels, HbA1c, body weight, and insulin dose were evaluated before the switch to liraglutide (baseline) and at 12 and 24 weeks of administration. Trends in HbA1c and weight were compared at 12 and 24 weeks of administration. Multiple regression analyses were conducted to identify clinical factors predicting a successful switch to liraglutide.
Results
Multiple regression analysis with ΔHbA1c as the dependent variable in the continuation group indicated that HbA1c at 12 weeks of administration decreased with higher baseline HbA1c and increased with higher baseline daily insulin doses. Multiple regression analysis with Δweight as the dependent variable indicated that Δweight at 24 weeks of liraglutide administration was higher with higher baseline daily insulin doses and longer duration of diabetes. Based on the area under the receiver operating characteristic curve, cut-off values of 19 units for daily insulin dose and nine years for duration of diabetes were identified.
Conclusions
Switching from insulin to liraglutide therapy is possible for carefully selected patients. Daily insulin dosage and duration of insulin therapy appear to be clinically useful indicators for the efficacy of liraglutide therapy.
doi:10.14740/jocmr1719w
PMCID: PMC3935523  PMID: 24578756
Type 2 diabetes mellitus; HbA1c; GLP-1 receptor agonist; Liraglutide; Hypoglycemia
11.  Crystallization and preliminary X-ray crystallographic analysis of dioscorin from Dioscorea japonica  
Dioscorin from D. japonica was expressed, purified and crystallized using the sitting-drop vapour-diffusion method. The dioscorin crystal diffracted X-rays to 2.11 Å resolution.
Dioscorin, the major tuber storage protein in yam, has been reported to possess carbonic anhydrase, trypsin inhibitor, angiotensin-converting enzyme (ACE) inhibitor, free-radical scavenger, dehydroascorbate reductase and mono­dehydro­ascorbate reductase activities. Recent research has also found that dioscorin can enhance immune modulation via the toll-like receptor 4 (TLR-4) signal transduction pathway in RAW 264.7 cells, murine bone-marrow cells and human monocytes ex vivo. Resolving the structure of dioscorin would help in better understanding its activities and would provide clues to understanding the mechanism of its multiple functions. The full-length protein (residues 1–246) with an additional His6 tag at the N-terminus was expressed in Escherichia coli Rosetta (DE3) cells. After His-tag cleavage and purification, the protein was crystallized by the sitting-drop vapour-diffusion method at 278 K. An X-ray diffraction data set was collected to a resolution of 2.11 Å using a synchrotron X-­ray source. The crystal belonged to space group C2221, with unit-cell parameters a = 83.5, b = 156.8, c = 83.6 Å, and was estimated to contain two protein molecules per asymmetric unit.
doi:10.1107/S1744309111053723
PMCID: PMC3274401  PMID: 22297997
dioscorin; Dioscorea japonica
12.  An Approach for Identifying Brainstem Dopaminergic Pathways Using Resting State Functional MRI 
PLoS ONE  2014;9(1):e87109.
Here, we present an approach for identifying brainstem dopaminergic pathways using resting state functional MRI. In a group of healthy individuals, we searched for significant functional connectivity between dopamine-rich midbrain areas (substantia nigra; ventral tegmental area) and a striatal region (caudate) that was modulated by both a pharmacological challenge (the administration of the dopaminergic agonist bromocriptine) and a dopamine-sensitive cognitive trait (an individual’s working memory capacity). A significant inverted-U shaped connectivity pattern was found in a subset of midbrain-striatal connections, demonstrating that resting state fMRI data is sufficiently powerful to identify brainstem neuromodulatory brain networks.
doi:10.1371/journal.pone.0087109
PMCID: PMC3909040  PMID: 24498023
13.  Repeated exposure to a tone transiently alters spectral tuning bandwidth of neurons in the central nucleus of inferior colliculus in juvenile rats 
Neuroscience  2012;230:114-120.
Early acoustic experience changes tonal frequency tuning in inferior colliculus (IC) and primary auditory cortex. The contributions of IC plasticity to cortical frequency map reorganization are not entirely clear. While most cortical plasticity studies exposed animals to pulsed tones, studies of IC plasticity used either noise or a continuous tone. Here we compared the effects of repeated exposure to single-frequency tone pips on cortical and IC frequency representations in juvenile rats. We found that while tone exposure caused a long-lasting increase in cortical representations of the exposure frequency, changes to IC neurons were limited to a transient narrowing of tuning bandwidth. These results suggest that previously documented cortical frequency map reorganization does not depend on similar changes in subcortical auditory nuclei.
doi:10.1016/j.neuroscience.2012.10.068
PMCID: PMC3562544  PMID: 23168325
Subcortical plasticity; inferior colliculus; auditory cortex; bandwidth; tonotopic map; polytrode
14.  Glucoamylase of Caulobacter crescentus CB15: cloning and expression in Escherichia coli and functional identification 
AMB Express  2014;4:5.
The biochemical properties of the maltodextrin-hydrolyzing enzymes of cold-tolerant proteobacterium Caulobacter crescentus CB15 remain to be elucidated, although whose maltodextrin transport systems were well investigated. We cloned the putative glucoamylase of C. crescentus CB15 (CauloGA) gene. The CauloGA gene product that was expressed in E. coli was prone to forming inclusion bodies; however, most of the gene product was expressed in a soluble and active form when it was expressed as a fusion protein with Staphylococcus Protein A. The fusion protein was purified using an IgG Sepharose column and was identified as the active GA. The optimum temperature and pH for the activity of this GA toward maltotriose as a substrate were approximately 40°C and 5.0, respectively, and a differential scanning fluorimetry (DSF) analysis revealed that the melting temperature (Tm) of CauloGA was 42.9°C. The kinetic analyses with maltotriose and other maltodextrins as the substrates indicated that CauloGA has higher kcat and smaller Km values at 30°C with both substrates compared with other GAs at lower substrate concentration. However, the enzyme activities toward the substrates decreased as the substrate concentrations increased at concentrations higher than approximately 10-fold the Km. The function-based identification of thermolabile Caulobacter GA contributes to the understanding of the maltodextrin-degradation system of C. crescentus as well as the bacterial GA’s function-structure relationship.
doi:10.1186/2191-0855-4-5
PMCID: PMC3917699  PMID: 24468405
Cloning; Expression; Thermolabile glucoamylase; Characterization; Subsite affinity; Inhibition
15.  Cooperative Integration and Representation Underlying Bilateral Network of Fly Motion-Sensitive Neurons 
PLoS ONE  2014;9(1):e85790.
How is binocular motion information integrated in the bilateral network of wide-field motion-sensitive neurons, called lobula plate tangential cells (LPTCs), in the visual system of flies? It is possible to construct an accurate model of this network because a complete picture of synaptic interactions has been experimentally identified. We investigated the cooperative behavior of the network of horizontal LPTCs underlying the integration of binocular motion information and the information representation in the bilateral LPTC network through numerical simulations on the network model. First, we qualitatively reproduced rotational motion-sensitive response of the H2 cell previously reported in vivo experiments and ascertained that it could be accounted for by the cooperative behavior of the bilateral network mainly via interhemispheric electrical coupling. We demonstrated that the response properties of single H1 and Hu cells, unlike H2 cells, are not influenced by motion stimuli in the contralateral visual hemi-field, but that the correlations between these cell activities are enhanced by the rotational motion stimulus. We next examined the whole population activity by performing principal component analysis (PCA) on the population activities of simulated LPTCs. We showed that the two orthogonal patterns of correlated population activities given by the first two principal components represent the rotational and translational motions, respectively, and similar to the H2 cell, rotational motion produces a stronger response in the network than does translational motion. Furthermore, we found that these population-coding properties are strongly influenced by the interhemispheric electrical coupling. Finally, to test the generality of our conclusions, we used a more simplified model and verified that the numerical results are not specific to the network model we constructed.
doi:10.1371/journal.pone.0085790
PMCID: PMC3900430  PMID: 24465711
16.  The phosphorylation of HIV-1 Gag by atypical protein kinase C facilitates viral infectivity by promoting Vpr incorporation into virions 
Retrovirology  2014;11:9.
Background
Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein that mediates the assembly and release of virus-like particles (VLPs) from an infected cell membrane. The Gag C-terminal p6 domain contains short sequence motifs that facilitate virus release from the plasma membrane and mediate incorporation of the viral Vpr protein. Gag p6 has also been found to be phosphorylated during HIV-1 infection and this event may affect virus replication. However, the kinase that directs the phosphorylation of Gag p6 toward virus replication remains to be identified. In our present study, we identified this kinase using a proteomic approach and further delineate its role in HIV-1 replication.
Results
A proteomic approach was designed to systematically identify human protein kinases that potently interact with HIV-1 Gag and successfully identified 22 candidates. Among this panel, atypical protein kinase C (aPKC) was found to phosphorylate HIV-1 Gag p6. Subsequent LC-MS/MS and immunoblotting analysis with a phospho-specific antibody confirmed both in vitro and in vivo that aPKC phosphorylates HIV-1 Gag at Ser487. Computer-assisted structural modeling and a subsequent cell-based assay revealed that this phosphorylation event is necessary for the interaction between Gag and Vpr and results in the incorporation of Vpr into virions. Moreover, the inhibition of aPKC activity reduced the Vpr levels in virions and impaired HIV-1 infectivity of human primary macrophages.
Conclusion
Our current results indicate for the first time that HIV-1 Gag phosphorylation on Ser487 is mediated by aPKC and that this kinase may regulate the incorporation of Vpr into HIV-1 virions and thereby supports virus infectivity. Furthermore, aPKC inhibition efficiently suppresses HIV-1 infectivity in macrophages. aPKC may therefore be an intriguing therapeutic target for HIV-1 infection.
doi:10.1186/1742-4690-11-9
PMCID: PMC3905668  PMID: 24447338
HIV-1 infection; Phosphorylation; Vpr; aPKC
17.  Developmental Link between Sex and Nutrition; doublesex Regulates Sex-Specific Mandible Growth via Juvenile Hormone Signaling in Stag Beetles 
PLoS Genetics  2014;10(1):e1004098.
Sexual dimorphisms in trait expression are widespread among animals and are especially pronounced in ornaments and weapons of sexual selection, which can attain exaggerated sizes. Expression of exaggerated traits is usually male-specific and nutrition sensitive. Consequently, the developmental mechanisms generating sexually dimorphic growth and nutrition-dependent phenotypic plasticity are each likely to regulate the expression of extreme structures. Yet we know little about how either of these mechanisms work, much less how they might interact with each other. We investigated the developmental mechanisms of sex-specific mandible growth in the stag beetle Cyclommatus metallifer, focusing on doublesex gene function and its interaction with juvenile hormone (JH) signaling. doublesex genes encode transcription factors that orchestrate male and female specific trait development, and JH acts as a mediator between nutrition and mandible growth. We found that the Cmdsx gene regulates sex differentiation in the stag beetle. Knockdown of Cmdsx by RNA-interference in both males and females produced intersex phenotypes, indicating a role for Cmdsx in sex-specific trait growth. By combining knockdown of Cmdsx with JH treatment, we showed that female-specific splice variants of Cmdsx contribute to the insensitivity of female mandibles to JH: knockdown of Cmdsx reversed this pattern, so that mandibles in knockdown females were stimulated to grow by JH treatment. In contrast, mandibles in knockdown males retained some sensitivity to JH, though mandibles in these individuals did not attain the full sizes of wild type males. We suggest that moderate JH sensitivity of mandibular cells may be the default developmental state for both sexes, with sex-specific Dsx protein decreasing sensitivity in females, and increasing it in males. This study is the first to demonstrate a causal link between the sex determination and JH signaling pathways, which clearly interact to determine the developmental fates and final sizes of nutrition-dependent secondary-sexual characters.
Author Summary
Sexual dimorphisms such as the exaggerated antlers of deer, the enormous clawed chelae of crabs, and the horns and mandibles of beetles, are widespread across animal taxa and have fascinated biologists for centuries. Much recent work has uncovered the importance of the role of the sex-determination pathway in the expression of sexually dimorphic traits. However, critical interactions between this pathway and other growth regulatory mechanisms – for example, the physiological mechanisms involved in nutrition-dependent expression of these traits – are less well understood. In this study, we provide evidence of a developmental link between nutrition-sensitivity and sexual differentiation in the giant mandibles of the sexually dimorphic stag beetle, Cyclommatus metallifer. We examined the regulation and function of a key sex determination gene in animals, doublesex (dsx), and its interaction with juvenile hormone (JH), an important insect hormone known to regulate insect polyphenisms including the regulation of the disproportionate growth of male stag beetle mandibles. We found that Cmdsx changes mandibular responsiveness to JH in a sex-specific pattern. Based on these results, we hypothesize that sex-specific regulation of JH responsiveness is a developmental link between nutrition and sexual differentiation in stag beetles.
doi:10.1371/journal.pgen.1004098
PMCID: PMC3894178  PMID: 24453990
18.  Changes in volume of stage I non-small-cell lung cancer during stereotactic body radiotherapy 
Background
The overall treatment time of stereotactic body radiotherapy (SBRT) for non-small-cell lung cancer is usually 3 to over 10 days. If it is longer than 7 days, tumor volume expansion during SBRT may jeopardize the target dose coverage. In this study, volume change of stage I NSCLC during SBRT was investigated.
Methods
Fifty patients undergoing 4-fraction SBRT with a total dose of 48 Gy (n = 36) or 52 Gy (n = 14) were analyzed. CT was taken for registration at the first and third SBRT sessions with an interval of 7 days in all patients. Patient age was 29–87 years (median, 77), and 39 were men. Histology was adenocarcinoma in 28, squamous cell carcinoma in 17, and others in 5. According to the UICC 7th classification, T-stage was T1a in 9 patients, T1b in 27, and T2a in 14. Tumor volumes on the first and 8th days were determined on CT images taken during the exhalation phase, by importing the data into the Dr. View/LINAX image analysis system. After determining the optimal threshold for distinguishing tumor from pulmonary parenchyma, the region above -250 HU was automatically extracted and the tumor volumes were calculated.
Results
The median tumor volume was 7.3 ml (range, 0.5-35.7) on day 1 and 7.5 ml (range, 0.5-35.7) on day 8. Volume increase of over 10% was observed in 16 cases (32%); increases by >10 to ≤20%, >20 to ≤30%, and >30% were observed in 9, 5, and 2 cases, respectively. The increase in the estimated tumor diameter was over 2 mm in 3 cases and 1–2 mm in 6. A decrease of 10% or more was seen in 3 cases. Among the 16 tumors showing a volume increase of over 10%, T-stage was T1a in 2 patients, T1b in 9, and T2a in 5. Histology was adenocarcinoma in 10 patients, squamous cell carcinoma in 5, and others in 1.
Conclusions
Volume expansion >10% was observed in 32% of the tumors during the first week of SBRT, possibly due to edema or sustained tumor progression. When planning SBRT, this phenomenon should be taken into account.
doi:10.1186/1748-717X-9-8
PMCID: PMC3904205  PMID: 24393430
19.  Tumor Necrosis Factor-alpha Potentiates the Cytotoxicity of Amiodarone in Hepa1c1c7 Cells: Roles of Caspase Activation and Oxidative Stress 
Toxicological Sciences  2012;131(1):164-178.
Amiodarone (AMD), a class III antiarrhythmic drug, causes idiosyncratic hepatotoxicity in human patients. We demonstrated previously that tumor necrosis factor-alpha (TNF-α) plays an important role in a rat model of AMD-induced hepatotoxicity under inflammatory stress. In this study, we developed a model in vitro to study the roles of caspase activation and oxidative stress in TNF potentiation of AMD cytotoxicity. AMD caused cell death in Hepa1c1c7 cells, and TNF cotreatment potentiated its toxicity. Activation of caspases 9 and 3/7 was observed in AMD/TNF-cotreated cells, and caspase inhibitors provided minor protection from cytotoxicity. Intracellular reactive oxygen species (ROS) generation and lipid peroxidation were observed after treatment with AMD and were further elevated by TNF cotreatment. Adding water-soluble antioxidants (trolox, N-acetylcysteine, glutathione, or ascorbate) produced only minor attenuation of AMD/TNF-induced cytotoxicity and did not influence the effect of AMD alone. On the other hand, α-tocopherol (TOCO), which reduced lipid peroxidation and ROS generation, prevented AMD toxicity and caused pronounced reduction in cytotoxicity from AMD/TNF cotreatment. α-TOCO plus a pancaspase inhibitor completely abolished AMD/TNF-induced cytotoxicity. In summary, activation of caspases and oxidative stress were observed after AMD/TNF cotreatment, and caspase inhibitors and a lipid-soluble free-radical scavenger attenuated AMD/TNF-induced cytotoxicity.
doi:10.1093/toxsci/kfs289
PMCID: PMC3537133  PMID: 23042730
amiodarone; tumor necrosis factor-alpha; lipid peroxidation; caspase
20.  PRICKLE1 Interaction with SYNAPSIN I Reveals a Role in Autism Spectrum Disorders 
PLoS ONE  2013;8(12):e80737.
The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1+/− mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles.
doi:10.1371/journal.pone.0080737
PMCID: PMC3849077  PMID: 24312498
21.  Addition of Exogenous NAD+ Prevents Mefloquine-Induced Neuroaxonal and Hair Cell Degeneration through Reduction of Caspase-3-Mediated Apoptosis in Cochlear Organotypic Cultures 
PLoS ONE  2013;8(11):e79817.
Background
Mefloquine is widely used for the treatment of malaria. However, this drug is known to induce neurological side effects including depression, anxiety, balance disorder, and sensorineural hearing loss. Yet, there is currently no treatment for these side effects.
Principal Findings
In this study, we show that the coenzyme NAD+, known to play a critical role in maintaining the appropriate cellular redox environment, protects cochlear axons and sensory hair cells from mefloquine-induced degeneration in cultured rat cochleae. Mefloquine alone destroyed hair cells and nerve fiber axons in rat cochlear organotypics cultures in a dose-dependent manner, while treatment with NAD+ protected axons and hair cells from mefloquine-induced degeneration. Furthermore, cochlear organs treated with mefloquine showed increased oxidative stress marker levels, including superoxide and protein carbonyl, and increased apoptosis marker levels, including TUNEL-positive nuclei and caspases-3. Treatment with NAD+ reduced the levels of these oxidative stress and apoptosis markers.
Conclusions/Significance
Taken together, our findings suggest that that mefloquine disrupts the cellular redox environment and induces oxidative stress in cochlear hair cells and nerve fibers leading to caspases-3-mediated apoptosis of these structures. Exogenous NAD+ suppresses mefloquine-induced oxidative stress and prevents the degeneration of cochlear axons and sensory hair cells caused by mefloquine treatment.
doi:10.1371/journal.pone.0079817
PMCID: PMC3819247  PMID: 24223197
22.  Preimmunization of donor lymphocytes enhances antitumor immunity of autologous hematopoietic stem cell transplantation 
Cancer Medicine  2013;2(5):636-645.
Lymphopenia-induced homeostatic proliferation (HP) of T cells following autologous hematopoietic stem cell transplantation (HSCT) skews the T-cell repertoire by engaging tumor-associated antigens (TAAs), leading to an induction of antitumor immunity. Here, as the tumor-reactive lymphocytes preferentially proliferate during the condition of HP, we examined whether the priming of a donor lymphocytes to TAAs could enhance HP-induced antitumor immunity in autologous HSCT recipients. First, to examine whether the tumor-bearing condition of donor influences the antitumor effect of HSCT, the lymphocytes isolated from CT26 tumor-bearing mice were infused into lethally irradiated mice. The growth of tumors was substantially suppressed in the mice that received HSCT from a tumor-bearing donor compared with a naïve donor, suggesting that a fraction of donor lymphocytes from tumor-bearing mice are primed in response to TAAs and remain responsive upon transplantation. We previously reported that type I interferon (IFN) maturates the dendritic cells and promotes the priming of T cells. We then investigated whether the further priming of donor cells by IFN-α can strengthen the antitumor effect of HSCT. The intratumoral IFN-α gene transfer significantly increased the number of IFN-γ-positive lymphocytes in response to CT26 cells but not the syngeneic lymphocytes in donor mice. The infusion of primed donor lymphocytes markedly suppressed the tumor growth in recipient mice, and cured 64% of the treated mice. Autologous HSCT with the infusion of primed donor lymphocytes is a promising strategy to induce an effective antitumor immunity for solid cancers.
doi:10.1002/cam4.117
PMCID: PMC3892795  PMID: 24403229
Donor; gene therapy; hematopoietic stem cell transplantation; interferon-alpha; preimmunization
23.  Selectivity and Plasticity in a Sound-Evoked Male-Male Interaction in Drosophila 
PLoS ONE  2013;8(9):e74289.
During courtship, many animals, including insects, birds, fish, and mammals, utilize acoustic signals to transmit information about species identity. Although auditory communication is crucial across phyla, the neuronal and physiologic processes are poorly understood. Sound-evoked chaining behavior, a display of homosexual courtship behavior in Drosophila males, has long been used as an excellent model for analyzing auditory behavior responses, outcomes of acoustic perception and higher-order brain functions. Here we developed a new method, termed ChaIN (Chain Index Numerator), in which we use a computer-based auto detection system for chaining behavior. The ChaIN system can systematically detect the chaining behavior induced by a series of modified courtship song playbacks. Two evolutionarily related Drosophila species, Drosophila melanogaster and Drosophila simulans, exhibited dramatic selective increases in chaining behavior when exposed to specific auditory cues, suggesting that auditory discrimination processes are involved in the acceleration of chaining behavior. Prolonged monotonous pulse sounds containing courtship song components also induced high intense chaining behavior. Interestingly, the chaining behavior was gradually suppressed over time when song playback continued. This behavioral change is likely to be a plastic behavior and not a simple sensory adaptation or fatigue, because the suppression was released by applying a different pulse pattern. This behavioral plasticity is not a form of habituation because different modality stimuli did not recover the behavioral suppression. Intriguingly, this plastic behavior partially depended on the cAMP signaling pathway controlled by the rutabaga adenylyl cyclase gene that is important for learning and memory. Taken together, this study demonstrates the selectivity and behavioral kinetics of the sound-induced interacting behavior of Drosophila males, and provides a basis for the systematic analysis of genes and neural circuits underlying complex acoustic behavior.
doi:10.1371/journal.pone.0074289
PMCID: PMC3782482  PMID: 24086330
24.  The mandibular response to occlusal relief using a flat guidance splint 
Background
The mechanism of action of occlusal splints used for the successful treatment of temporomandibular disorders (TMD) remains unclear and controversial.
Aim
The aim of this study was to observe the mandibular response during sleep bruxism (SB) on the elimination of occlusal influences by using a flat anterior and lateral guidance splint (FGS).
Material and method
Any changes in mandibular movement patterns and condylar position with the introduction of this tool were measured. Current SB activity on the natural dentition was evaluated using a Brux Checker® (BC) and compared with the activity after insertion of an FGS in 153 subjects.
Result
The spatial mandibular position changed individually with a tendency toward forward and downward movement. The insertion of an FGS led to a change in the topographical condyle-fossa relationship and seemed to create an “unloading” condition for the temporomandibular joint. It was found that increased angulation of the maxillar incisors was responsible for altered muscular activity during sleep.
Conclusion
The masticatory organ appears to self-regulate and to provide an oral behavior modification, which may be more physiological using the FGS as a compensating factor. In this context, it is assumed that sleep bruxism in terms of parafunctional activity is a physiological function of the masticatory organ. The results of this study indicate the importance of controlling anterior guidance in the functional reconstruction of human occlusion.
doi:10.1007/s12548-013-0093-8
PMCID: PMC3835921  PMID: 24273617
Sleep bruxism; Tooth grinding; Brux checker; Temporomandibular joint; Temporomandibular disorders; Occlusal splint
25.  Chronic overload of SEPT4, a parkin substrate that aggregates in Parkinson’s disease, causes behavioral alterations but not neurodegeneration in mice 
Molecular Brain  2013;6:35.
Background
In autosomal recessive early-onset Parkinsonism (PARK2), the pathogenetic process from the loss of function of a ubiquitin ligase parkin to the death of dopamine neurons remains unclear. A dominant hypothesis attributes the neurotoxicity to accumulated substrates that are exempt from parkin-mediated degradation. Parkin substrates include two septins; SEPT4/CDCrel-2 which coaggregates with α-synuclein as Lewy bodies in Parkinson’s disease, and its closest homolog SEPT5/CDCrel-1/PNUTL1 whose overload with viral vector can rapidly eliminate dopamine neurons in rats. However, chronic effects of pan-neural overload of septins have never been examined in mammals. To address this, we established a line of transgenic mice that express the largest gene product SEPT454kDa via the prion promoter in the entire brain.
Results
Histological examination and biochemical quantification of SEPT4-associated proteins including α-synuclein and the dopamine transporter in the nigrostriatal dopamine neurons found no significant difference between Sept4Tg/+ and wild-type littermates. Thus, the hypothetical pathogenicity by the chronic overload of SEPT4 alone, if any, is insufficient to trigger neurodegenerative process in the mouse brain. Intriguingly, however, a systematic battery of behavioral tests revealed unexpected abnormalities in Sept4Tg/+ mice that include consistent attenuation of voluntary activities in distinct behavioral paradigms and altered social behaviors.
Conclusions
Together, these data indicate that septin dysregulations commonly found in postmortem human brains with Parkinson’s disease, schizophrenia and bipolar disorders may be responsible for a subset of behavioral abnormalities in the patients.
doi:10.1186/1756-6606-6-35
PMCID: PMC3751304  PMID: 23938054
Parkin; Septin; Transgenic mouse; Systematic behavioral screening

Results 1-25 (215)