Search tips
Search criteria

Results 1-25 (26)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  The evolution of primary progressive apraxia of speech 
Brain  2014;137(10):2783-2795.
Josephs et al. use a multi-modal approach to assess neuroanatomical and clinical changes over time in primary progressive apraxia of speech. They demonstrate that progressive atrophy of cortex, basal ganglia and midbrain accompanies the clinical progression, including the emergence of progressive supranuclear palsy five years post-onset in some subjects.
Primary progressive apraxia of speech is a recently described neurodegenerative disorder in which patients present with an isolated apraxia of speech and show focal degeneration of superior premotor cortex. Little is known about how these individuals progress over time, making it difficult to provide prognostic estimates. Thirteen subjects with primary progressive apraxia of speech underwent two serial comprehensive clinical and neuroimaging evaluations 2.4 years apart [median age of onset = 67 years (range: 49–76), seven females]. All underwent detailed speech and language, neurological and neuropsychological assessments, and magnetic resonance imaging, diffusion tensor imaging and 18F-fluorodeoxyglucose positron emission tomography at both baseline and follow-up. Rates of change of whole brain, ventricle, and midbrain volumes were calculated using the boundary-shift integral and atlas-based parcellation, and rates of regional grey matter atrophy were assessed using tensor-based morphometry. White matter tract degeneration was assessed on diffusion-tensor imaging at each time-point. Patterns of hypometabolism were assessed at the single subject-level. Neuroimaging findings were compared with a cohort of 20 age, gender, and scan-interval matched healthy controls. All subjects developed extrapyramidal signs. In eight subjects the apraxia of speech remained the predominant feature. In the other five there was a striking progression of symptoms that had evolved into a progressive supranuclear palsy-like syndrome; they showed a combination of severe parkinsonism, near mutism, dysphagia with choking, vertical supranuclear gaze palsy or slowing, balance difficulties with falls and urinary incontinence, and one was wheelchair bound. Rates of whole brain atrophy (1.5% per year; controls = 0.4% per year), ventricular expansion (8.0% per year; controls = 3.3% per year) and midbrain atrophy (1.5% per year; controls = 0.1% per year) were elevated (P ≤ 0.001) in all 13, compared to controls. Increased rates of brain atrophy over time were observed throughout the premotor cortex, as well as prefrontal cortex, motor cortex, basal ganglia and midbrain, while white matter tract degeneration spread into the splenium of the corpus callosum and motor cortex white matter. Hypometabolism progressed over time in almost all subjects. These findings demonstrate that some subjects with primary progressive apraxia of speech will rapidly evolve and develop a devastating progressive supranuclear palsy-like syndrome ∼ 5 years after onset, perhaps related to progressive involvement of neocortex, basal ganglia and midbrain. These findings help improve our understanding of primary progressive apraxia of speech and provide some important prognostic guidelines.
PMCID: PMC4229741  PMID: 25113789
non-fluent speech; parkinsonism; progressive supranuclear palsy; disease progression; magnetic resonance imaging
2.  Identification of an atypical variant of logopenic progressive aphasia 
Brain and language  2013;127(2):10.1016/j.bandl.2013.02.007.
The purpose of this study was to examine the association between aphasia severity and neurocognitive function, disease duration and temporoparietal atrophy in 21 individuals with the logopenic variant of primary progressive aphasia (lvPPA). We found significant correlations between aphasia severity and neurocognitive severity as well as temporoparietal atrophy; but not disease duration. Cluster analysis identified three variants of lvPPA: (1) subjects with mild aphasia and short disease duration (mild typical lvPPA); (2) subjects with mild aphasia and long disease duration (mild atypical lvPPA); and, (3) subjects with severe aphasia and relatively long disease duration (severe typical lvPPA). All three variants showed temporoparietal atrophy, with the mild atypical group showing the least atrophy despite the longest disease duration. The mild atypical group also showed mild neuropsychological impairment. The subjects with mild aphasia and neuropsychological impairment despite long disease duration may represent a slowly progressive variant of lvPPA.
PMCID: PMC3725183  PMID: 23566690
Primary progressive aphasia; Logopenic aphasia; Neurocognitive impairment; Temporoparietal atrophy; Voxel-based morphometry
3.  Practice effects and longitudinal cognitive change in normal aging vs. incident mild cognitive impairment and dementia in the Mayo Clinic Study of Aging 
The Clinical neuropsychologist  2013;27(8):10.1080/13854046.2013.836567.
The objective of this study was to examine practice effects and longitudinal cognitive change in a population based cohort classified as clinically normal at their initial evaluation. We examined 1390 individuals with a median age of 78.1 years and re-evaluated them up to four times at approximate 15 month intervals, with an average follow-up time of five years. Of the 1390 participants, 947 (69%) individuals remained cognitively normal, 397 (29%) progressed to mild cognitive impairment (MCI), and 46 (3%) to dementia. The stable normal group showed an initial practice effect in all domains which was sustained in memory and visuospatial reasoning. There was only a slight decline in attention and language after visit 3. We combined individuals with incident MCI and dementia to form one group representing those who declined. The incident MCI/dementia group showed an unexpected practice effect in memory from baseline to visit 2, with a significant decline thereafter. This group did not demonstrate practice effects in any other domain and showed a downward trajectory in all domains at each evaluation. Modeling cognitive change in an epidemiologic sample may serve as a useful benchmark for evaluating cognitive change in future intervention studies.
PMCID: PMC3869900  PMID: 24041121
Cognition; memory; practice effects; mild cognitive impairment; Alzheimer’s disease
4.  Amyloid Burden Correlates with Cognitive Decline in Alzheimer’s Disease Presenting with Aphasia 
A subset of patients with Alzheimer’s disease (AD) present with early and prominent language deficits. It is unclear whether the burden of underlying β-amyloid pathology is associated with language or general cognitive impairment in these subjects.
Here, we assess the relationship between cortical β-amyloid burden on [11C]Pittsburgh compound B (PiB) PET and performance on the Montreal Cognitive Assessment (MoCA), the Wechsler Memory Scale-Third Edition (WMS-III), the Boston Naming Test (BNT), and the Western Aphasia Battery (WAB) using regression and correlation analyses in subjects presenting with aphasia that showed β-amyloid deposition on PiB PET.
The global PiB ratio was inversely correlated with MoCA (p = 0.02) and the WMS-III Visual Reproduction (VR) subtest (VR I, p = 0.02; VR II, p = 0.04). However, the correlations between PiB ratio, BNT (p = 0.13), WAB aphasia quotient (p = 0.11), and WAB repetition scores (p = 0.34) were not significant.
This study demonstrates that an increased cortical β-amyloid burden is associated with cognitive impairment, but not language deficits, in AD subjects presenting with aphasia. The results suggest that β-amyloid deposition may partly contribute to impaired cognition in such patients while language dysfunction may be influenced by other pathologic mechanisms, perhaps downstream pathways of β-amyloid deposition.
PMCID: PMC4057296  PMID: 24330306
Dementia; Aphasia; PET; Beta-amyloid; PiB
5.  Nonverbal oral apraxia in primary progressive aphasia and apraxia of speech 
Neurology  2014;82(19):1729-1735.
The goal of this study was to explore the prevalence of nonverbal oral apraxia (NVOA), its association with other forms of apraxia, and associated imaging findings in patients with primary progressive aphasia (PPA) and progressive apraxia of speech (PAOS).
Patients with a degenerative speech or language disorder were prospectively recruited and diagnosed with a subtype of PPA or with PAOS. All patients had comprehensive speech and language examinations. Voxel-based morphometry was performed to determine whether atrophy of a specific region correlated with the presence of NVOA.
Eighty-nine patients were identified, of which 34 had PAOS, 9 had agrammatic PPA, 41 had logopenic aphasia, and 5 had semantic dementia. NVOA was very common among patients with PAOS but was found in patients with PPA as well. Several patients exhibited only one of NVOA or apraxia of speech. Among patients with apraxia of speech, the severity of the apraxia of speech was predictive of NVOA, whereas ideomotor apraxia severity was predictive of the presence of NVOA in those without apraxia of speech. Bilateral atrophy of the prefrontal cortex anterior to the premotor area and supplementary motor area was associated with NVOA.
Apraxia of speech, NVOA, and ideomotor apraxia are at least partially separable disorders. The association of NVOA and apraxia of speech likely results from the proximity of the area reported here and the premotor area, which has been implicated in apraxia of speech. The association of ideomotor apraxia and NVOA among patients without apraxia of speech could represent disruption of modules shared by nonverbal oral movements and limb movements.
PMCID: PMC4032207  PMID: 24727315
6.  Clinical, FDG and amyloid PET imaging in posterior cortical atrophy 
Journal of Neurology  2015;262(6):1483-1492.
The purpose of this study was to identify the clinical, [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) and amyloid-PET findings in a large cohort of posterior cortical atrophy (PCA) patients, to examine the neural correlates of the classic features of PCA, and to better understand the features associated with early PCA. We prospectively recruited 25 patients who presented to the Mayo Clinic between March 2013 and August 2014 and met diagnostic criteria for PCA. All patients underwent a standardized set of tests and amyloid imaging with [11C] Pittsburg compound B (PiB). Seventeen (68 %) underwent FDG-PET scanning. We divided the cohort at the median disease duration of 4 years in order to assess clinical and FDG-PET correlates of early PCA (n = 13). The most common clinical features were simultanagnosia (92 %), dysgraphia (68 %), poly-mini-myoclonus (64 %) and oculomotor apraxia (56.5 %). On FDG-PET, hypometabolism was observed bilaterally in the lateral and medial parietal and occipital lobes. Simultanagnosia was associated with hypometabolism in the right occipital lobe and posterior cingulum, optic ataxia with hypometabolism in left occipital lobe, and oculomotor apraxia with hypometabolism in the left parietal lobe and posterior cingulate gyrus. All 25 PCA patients were amyloid positive. Simultanagnosia was the only feature present in 85 % of early PCA patients. The syndrome of PCA is associated with posterior hemisphere hypometabolism and with amyloid deposition. Many of the classic features of PCA show associated focal, but not widespread, areas of involvement of these posterior hemispheric regions. Simultanagnosia appears to be the most common and hence sensitive feature of early PCA.
PMCID: PMC4469094  PMID: 25862483
PCA; FDG-PET; Cerebral hypometabolism; Clinical findings; Early PCA
7.  Quantitative application of the primary progressive aphasia consensus criteria 
Neurology  2014;82(13):1119-1126.
To determine how well the consensus criteria could classify subjects with primary progressive aphasia (PPA) using a quantitative speech and language battery that matches the test descriptions provided by the consensus criteria.
A total of 105 participants with a neurodegenerative speech and language disorder were prospectively recruited and underwent neurologic, neuropsychological, and speech and language testing and MRI in this case-control study. Twenty-one participants with apraxia of speech without aphasia served as controls. Select tests from the speech and language battery were chosen for application of consensus criteria and cutoffs were employed to determine syndromic classification. Hierarchical cluster analysis was used to examine participants who could not be classified.
Of the 84 participants, 58 (69%) could be classified as agrammatic (27%), semantic (7%), or logopenic (35%) variants of PPA. The remaining 31% of participants could not be classified. Of the unclassifiable participants, 2 clusters were identified. The speech and language profile of the first cluster resembled mild logopenic PPA and the second cluster semantic PPA. Gray matter patterns of loss of these 2 clusters of unclassified participants also resembled mild logopenic and semantic variants.
Quantitative application of consensus PPA criteria yields the 3 syndromic variants but leaves a large proportion unclassified. Therefore, the current consensus criteria need to be modified in order to improve sensitivity.
PMCID: PMC3966800  PMID: 24598709
8.  Progranulin-associated PiB-negative logopenic primary progressive aphasia 
Journal of neurology  2014;261(3):604-614.
The logopenic variant of primary progressive aphasia (lvPPA) strongly associates with Alzheimer’s disease, but can also associate with frontotemporal lobar degeneration. We aimed to assess the frequency of lvPPA in patients with speech and language disorders without β-amyloid deposition, and to perform detailed neuroimaging and genetic testing in such lvPPA patients. Seventy-six patients with a neurodegenerative speech and language disorder and Pittsburgh compound B (PiB) PET imaging demonstrating no β-amyloid deposition were analyzed. Six lvPPA patients (8 %) were identified. All six underwent progranulin (GRN) gene testing. Structural abnormality index maps and Cortex ID analysis were utilized to assess individual patterns of grey matter atrophy on MRI and hypometabolism on 18-F fluorodeoxyglucose (FDG) PET. Statistical parametric mapping was used to perform MRI and FDG-PET group comparisons between those with (GRN-positive) and without (GRN-negative) progranulin mutations. All six lvPPA patients showed left temporoparietal atrophy and hypometabolism. Three patients (50 %) were GRN-positive. Speech, language, and neurological and neuropsychological profiles did not differ between GRN-positive and negative patients, although GRN-positive patients had family histories, were on average 8 years younger, and had lower PiB-PET ratios. All six patients showed similar patterns of atrophy and hypometabolism, although, as a group, GRN-positive patients had more severe abnormalities, particularly in anteromedial temporal lobes. Logopenic PPA accounts for a small minority of neurodegenerative speech and language disorders not associated with β-amyloid deposition. Identification of such patients, however, should prompt testing for GRN mutations, since GRN-positive patients do not have distinctive features, yet account for 50 % of this patient population.
PMCID: PMC3961471  PMID: 24449064
Progranulin; Logopenic; Primary progressive aphasia; β-amyloid; MRI; FDG-PET
9.  Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly 
Brain  2015;138(3):761-771.
Vemuri et al. show that amyloid and vascular pathologies are independent processes, and that both are major drivers of cognitive decline in the elderly. Cognitive reserve as measured by educational/occupational level and mid/late-life cognitive activity seems to offset the deleterious effects of both pathologies on cognitive trajectories.
Our primary objective was to investigate a biomarker driven model for the interrelationships between vascular disease pathology, amyloid pathology, and longitudinal cognitive decline in cognitively normal elderly subjects between 70 and 90 years of age. Our secondary objective was to investigate the beneficial effect of cognitive reserve on these interrelationships. We used brain amyloid-β load measured using Pittsburgh compound B positron emission tomography as a marker for amyloid pathology. White matter hyperintensities and brain infarcts were measured using fluid-attenuated inversion recovery magnetic resonance imaging as a marker for vascular pathology. We studied 393 cognitively normal elderly participants in the population-based Mayo Clinic Study of Aging who had a baseline 3 T fluid-attenuated inversion recovery magnetic resonance imaging assessment, Pittsburgh compound B positron emission tomography scan, baseline cognitive assessment, lifestyle measures, and at least one additional clinical follow-up. We classified subjects as being on the amyloid pathway if they had a global cortical amyloid-β load of ≥1.5 standard uptake value ratio and those on the vascular pathway if they had a brain infarct and/or white matter hyperintensities load ≥1.11% of total intracranial volume (which corresponds to the top 25% of white matter hyperintensities in an independent non-demented sample). We used a global cognitive z-score as a measure of cognition. We found no evidence that the presence or absence of vascular pathology influenced the presence or absence of amyloid pathology and vice versa, suggesting that the two processes seem to be independent. Baseline cognitive performance was lower in older individuals, in males, those with lower education/occupation, and those on the amyloid pathway. The rate of cognitive decline was higher in older individuals (P < 0.001) and those with amyloid (P = 0.0003) or vascular (P = 0.0037) pathologies. In those subjects with both vascular and amyloid pathologies, the effect of both pathologies on cognition was additive and not synergistic. For a 79-year-old subject, the predicted annual rate of global z-score decline was −0.02 if on neither pathway, −0.07 if on the vascular pathway, −0.08 if on the amyloid pathway and −0.13 if on both pathways. The main conclusions of this study were: (i) amyloid and vascular pathologies seem to be at least partly independent processes that both affect longitudinal cognitive trajectories adversely and are major drivers of cognitive decline in the elderly; and (ii) cognitive reserve seems to offset the deleterious effect of both pathologies on the cognitive trajectories.
PMCID: PMC4339775  PMID: 25595145
ageing; cognitive neurology; neuroimaging; neuro protective strategies
10.  Microbleeds in the logopenic variant of primary progressive aphasia 
Microbleeds have been associated with Alzheimer’s disease (AD), although it is unclear whether they occur in atypical presentations of AD, such as the logopenic variant of primary progressive aphasia (lvPPA). We aimed to assess the presence and clinical correlates of microbleeds in lvPPA.
Thirteen lvPPA subjects underwent 3T T2*-weighted and fluid-attenuated inversion recovery MRI and Pittsburgh Compound B (PiB) PET imaging. Microbleeds were identified on manual review and assigned a regional location. Total and regional white matter hyperintensity (WMH) burden was measured.
Microbleeds were observed in four lvPPA subjects (31%); most common in frontal lobe. Subjects with microbleeds were older, more likely female, and had a greater burden of WMH than those without microbleeds. The regional distribution of microbleeds did not match the regional distribution of WMH. All cases were PiB-positive.
Microbleeds occur in approximately 1/3 subjects with lvPPA, with older women at the highest risk.
PMCID: PMC3706560  PMID: 23562427
Logopenic variant of primary progressive aphasia; Alzheimer’s disease; microbleeds; white matter hyperintensities
11.  Aphasia with left occipitotemporal hypometabolism: A novel presentation of posterior cortical atrophy? 
Alzheimer’s disease is a common neurodegenerative disease often characterized by initial episodic memory loss. Atypical focal cortical presentations have been described, including the logopenic variant of primary progressive aphasia (lvPPA) which presents with language impairment, and posterior cortical atrophy (PCA) which presents with prominent visuospatial deficits. Both lvPPA and PCA are characterized by specific patterns of hypometabolism: left temporoparietal in lvPPA and bilateral parietoccipital in PCA. However, not every patient fits neatly into these categories. We retrospectively identified two patients with progressive aphasia and visuospatial deficits from a speech and language based disorders study. The patients were further characterized by MRI, fluorodeoxyglucose F18 and Pittsburgh Compound B (PiB) positron emission tomography. Two women, ages 62 and 69, presented with a history of a few years of progressive aphasia characterized by fluent output with normal grammar and syntax, anomia without loss of word meaning, and relatively spared repetition. They demonstrated striking deficits in visuospatial function for which they were lacking insight. Prominent hypometabolism was noted in the left occipitotemporal region and diffuse retention of PiB was noted. Posterior cortical atrophy may present focally with left occipitotemporal metabolism characterized clinically with a progressive fluent aphasia and prominent ventral visuospatial deficits with loss of insight.
PMCID: PMC4217166  PMID: 23850398
Alzheimer dementia; Aphasia; Functional Neuroimaging; Neuropsychology; Visual agnosia
12.  Effect of APOE ε4 Status on Intrinsic Network Connectivity in Cognitively Normal Elderly 
Archives of Neurology  2011;68(9):1131-1136.
To examine default mode and salience network functional connectivity as a function of APOE ε4 status in a group of cognitively normal age, gender and education-matched older adults.
Case-control study.
Community-based sample
Fifty-six cognitively normal APOE ε4 carriers and 56 age, gender and education-matched cognitively normal APOE ε4 non-carriers.
Main Outcome Measure
Alterations in in-phase default mode and salience network connectivity in APOE ε4 carriers compared to APOE ε4 non-carriers ranging from 63 to 91 years of age.
A posterior cingulate seed revealed decreased in-phase connectivity in regions of the posterior default mode network that included the left inferior parietal lobe, left middle temporal gyrus, and bilateral anterior temporal lobes in the ε4 carriers relative to APOE ε4 non-carriers. An anterior cingulate seed showed greater in-phase connectivity in the salience network, including the cingulate gyrus, medial prefrontal cortex, bilateral insular cortex, striatum, and thalamus in APOE ε4 carriers vs. non-carriers. There were no group-wise differences in brain anatomy.
We found reductions in posterior default mode network connectivity but increased salience network connectivity in elderly cognitively normal APOE ε4 carriers relative to APOE ε4 non-carriers at rest. The observation of functional alterations in connectivity in the absence of structural changes between APOE e4 carriers and non-carriers suggests that alterations in connectivity may have the potential to serve as an early biomarker.
PMCID: PMC3392960  PMID: 21555604
13.  Assessing the Temporal Relationship Between Cognition and Gait: Slow Gait Predicts Cognitive Decline in the Mayo Clinic Study of Aging 
The association between gait speed and cognition has been reported; however, there is limited knowledge about the temporal associations between gait slowing and cognitive decline among cognitively normal individuals.
The Mayo Clinic Study of Aging is a population-based study of Olmsted County, Minnesota, United States, residents aged 70–89 years. This analysis included 1,478 cognitively normal participants who were evaluated every 15 months with a nurse visit, neurologic evaluation, and neuropsychological testing. The neuropsychological battery used nine tests to compute domain-specific (memory, language, executive function, and visuospatial skills) and global cognitive z-scores. Timed gait speed (m/s) was assessed over 25 feet (7.6 meters) at a usual pace. Using mixed models, we examined baseline gait speed (continuous and in quartiles) as a predictor of cognitive decline and baseline cognition as a predictor of gait speed changes controlling for demographics and medical conditions.
Cross-sectionally, faster gait speed was associated with better performance in memory, executive function, and global cognition. Both cognitive scores and gait speed declined over time. A faster gait speed at baseline was associated with less cognitive decline across all domain-specific and global scores. These results were slightly attenuated after excluding persons with incident mild cognitive impairment or dementia. By contrast, baseline cognition was not associated with changes in gait speed.
Our study suggests that slow gait precedes cognitive decline. Gait speed may be useful as a reliable, easily attainable, and noninvasive risk factor for cognitive decline.
PMCID: PMC3712358  PMID: 23250002
Gait speed; Cognition; Longitudinal; Cohort study.
14.  Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA 
Neurology  2013;81(4):337-345.
We assessed whether clinical and imaging features of subjects with apraxia of speech (AOS) more severe than aphasia (dominant AOS) are more similar to agrammatic primary progressive aphasia (agPPA) or to primary progressive AOS (PPAOS).
Sixty-seven subjects (PPAOS = 18, dominant AOS = 10, agPPA = 9, age-matched controls = 30) who all had volumetric MRI, diffusion tensor imaging, F18-fluorodeoxyglucose and C11-labeled Pittsburgh compound B (PiB)-PET scanning, as well as neurologic and speech and language assessments, were included in this case-control study. AOS was classified as either type 1, predominated by sound distortions and distorted sound substitutions, or type 2, predominated by syllabically segmented prosodic speech patterns.
The dominant AOS subjects most often had AOS type 2, similar to PPAOS. In contrast, agPPA subjects most often had type 1 (p = 0.01). Both dominant AOS and PPAOS showed focal imaging abnormalities in premotor cortex, whereas agPPA showed widespread involvement affecting premotor, prefrontal, temporal and parietal lobes, caudate, and insula. Only the dominant AOS and PPAOS groups showed midbrain atrophy compared with controls. No differences were observed in PiB binding across all 3 groups, with the majority being PiB negative.
These results suggest that dominant AOS is more similar to PPAOS than agPPA, with dominant AOS and PPAOS exhibiting a clinically distinguishable subtype of progressive AOS compared with agPPA.
PMCID: PMC3772832  PMID: 23803320
15.  Distinct regional anatomic and functional correlates of neurodegenerative apraxia of speech and aphasia: an MRI and FDG-PET study 
Brain and language  2013;125(3):245-252.
Progressive apraxia of speech (AOS) can result from neurodegenerative disease and can occur in isolation or in the presence of agrammatic aphasia. We aimed to determine the neuroanatomical and metabolic correlates of progressive AOS and aphasia. Thirty-six prospectively recruited subjects with progressive AOS or agrammatic aphasia, or both, underwent the Western Aphasia Battery (WAB) and Token Test to assess aphasia, an AOS rating scale (ASRS), 3T MRI and 18-F fluorodeoxyglucose (FDG) PET. Correlations between clinical measures and imaging were assessed. The only region that correlated to ASRS was left superior premotor volume. In contrast, WAB and Token Test correlated with hypometabolism and volume of a network of left hemisphere regions, including pars triangularis, pars opercularis, pars orbitalis, middle frontal gyrus, superior temporal gyrus, precentral gyrus and inferior parietal lobe. Progressive agrammatic aphasia and AOS have non-overlapping regional correlations, suggesting that these are dissociable clinical features that have different neuroanatomical underpinnings.
PMCID: PMC3660445  PMID: 23542727
apraxia of speech; aphasia; atrophy; Broca’s area; premotor cortex; hypometabolism
16.  Neuroimaging comparison of Primary Progressive Apraxia of Speech & Progressive Supranuclear Palsy 
Primary progressive apraxia of speech, a motor speech disorder of planning and programming is a tauopathy that has overlapping histological features with progressive supranuclear palsy. We aimed to compare, for the first time, atrophy patterns, as well as white matter tract degeneration, between these two syndromes.
Sixteen primary progressive apraxia of speech subjects were age and gender-matched to 16 progressive supranuclear palsy subjects and 20 controls. All subjects were prospectively recruited, underwent neurological and speech evaluations, and 3.0 Tesla magnetic resonance imaging. Grey and white matter atrophy was assessed using voxel-based morphometry and atlas-based parcellation, and white matter tract degeneration was assessed using diffusion tensor imaging.
All progressive supranuclear palsy subjects had typical occulomotor/gait impairments but none had speech apraxia. Both syndromes showed grey matter loss in supplementary motor area, white matter loss in posterior frontal lobes and degeneration of the body of the corpus callosum. While lateral grey matter loss was focal, involving superior premotor cortex, in primary progressive apraxia of speech, loss was less focal extending into prefrontal cortex in progressive supranuclear palsy. Caudate volume loss and tract degeneration of superior cerebellar peduncles was also observed in progressive supranuclear palsy. Interestingly, area of the midbrain was reduced in both syndromes compared to controls, although this was greater in progressive supranuclear palsy.
Although neuroanatomical differences were identified between these distinctive clinical syndromes, substantial overlap was also observed, including midbrain atrophy, suggesting these two syndromes may have common pathophysiological underpinnings.
PMCID: PMC3556348  PMID: 23078273
Progressive supranuclear palsy; apraxia of speech; voxel-based morphometry; diffusion tensor imaging; midbrain
17.  Occupational differences between Alzheimer’s and aphasic dementias: implication for teachers 
We aimed to determine if there is an association between teaching and the development of progressive speech and language disorders (SLDs). Occupation was compared between 100 patients with a progressive SLD, 404 Alzheimer’s dementia patients, and the 2008 US census. In SLDs the most common occupation was teacher (22%), versus 8% in Alzheimer’s dementia. The odds ratio of being a teacher in SLDs compared to Alzheimer’s dementia was 3.4 (95% CI=1.87, 6.17). No differences were observed in the frequency of other occupations. The frequency of teachers was higher in SLDs compared to the US census; odds ratio of 6.9 (95% CI=4.3, 11.1). Farming, forestry and fishing occupations were more frequent in SLDs compared to the US census. We identified an association between progressive SLDs and the occupation of teaching. Since teaching is a communication demanding occupation, teachers may be more sensitive to the development of speech and language impairments.
PMCID: PMC3920458  PMID: 23838322
Alzheimer’s; dementia; aphasia; teacher; occupation
18.  Elevated occipital β-amyloid deposition is associated with widespread cognitive impairment in logopenic progressive aphasia 
Most subjects with logopenic primary progressive aphasia (lvPPA) have beta-amyloid (Aβ) deposition on Pittsburgh Compound B PET (PiB-PET), usually affecting prefrontal and temporoparietal cortices, with less occipital involvement.
To assess clinical and imaging features in lvPPA subjects with unusual topographic patterns of Aβ deposition with highest uptake in occipital lobe.
Thirty-three lvPPA subjects with Aβ deposition on PiB-PET were included in this case-control study. Line-plots of regional PiB uptake were created, including frontal, temporal, parietal and occipital regions, for each subject. Subjects in which the line sloped downwards in occipital lobe (lvPPA-low), representing low uptake, were separated from those where the line sloped upwards in occipital lobe (lvPPA-high), representing unusually high occipital uptake compared to other regions. Clinical variables, atrophy on MRI, hypometabolism on F18-fluorodeoxyglucose PET, and presence and distribution of microbleeds and white matter hyperintensities (WMH) were assessed.
Seventeen subjects (52%) were classified as lvPPA-high. Mean occipital PiB uptake in lvPPA-high was higher than all other regions, and higher than all regions in lvPPA-low. The lvPPA-high subjects performed more poorly on cognitive testing, including executive and visuospatial testing, but the two groups did not differ in aphasia severity. Proportion of microbleeds and WMH was higher in lvPPA-high than lvPPA-low. Parietal hypometabolism was greater in lvPPA-high than lvPPA-low.
Unusually high occipital Aβ deposition is associated with widespread cognitive impairment and different imaging findings in lvPPA. These findings help explain clinical heterogeneity in lvPPA, and suggest that Aβ influences severity of overall cognitive impairment but not aphasia.
PMCID: PMC3920541  PMID: 23946416
19.  Functional MRI Changes in Amnestic and Non-Amnestic MCI During Encoding and Recognition Tasks 
Functional MRI (fMRI) shows changes in multiple regions in amnestic MCI (aMCI). The concept of MCI recently evolved to include non-amnestic syndromes so little is known about fMRI changes in these individuals. This study investigated activation during visual complex scene encoding and recognition in 29 cognitively normal (CN) elderly, 19 individuals with aMCI and 12 individuals with non-amnestic MCI (naMCI). During encoding CN activated an extensive network that included bilateral occipital-parietal-temporal cortex, precuneus, posterior cingulate, thalamus, insula, and medial, anterior, and lateral frontal regions. Amnestic MCI activated an anatomic subset of these regions. Non-amnestic MCI activated an even smaller anatomic subset. During recognition, CN activated the same regions observed during encoding except the precuneus. Both MCI groups again activated a subset of the regions activated by CN. During encoding, CN had greater activation than aMCI and naMCI in bilateral temporo-parietal and frontal regions. During recognition, CN had greater activation than aMCI in predominantly temporo-parietal regions bilaterally while CN had greater activation than naMCI in larger areas involving bilateral temporo-parietal and frontal regions. The diminished parietal and frontal activation in naMCI may reflect compromised ability to perform non-memory (i.e., attention/executive, visuospatial function) components of the task.
PMCID: PMC2762430  PMID: 19402923
Magnetic resonance imaging; Neuropsychology; Frontal Lobe; Parietal Lobe; Temporal Lobe; Dementia
20.  FDG PET and MRI in Logopenic Primary Progressive Aphasia versus Dementia of the Alzheimer’s Type 
PLoS ONE  2013;8(4):e62471.
The logopenic variant of primary progressive aphasia is an atypical clinical variant of Alzheimer’s disease which is typically characterized by left temporoparietal atrophy on magnetic resonance imaging and hypometabolism on F-18 fluorodeoxyglucose positron emission tomography. We aimed to characterize and compare patterns of atrophy and hypometabolism in logopenic primary progressive aphasia, and determine which brain regions and imaging modality best differentiates logopenic primary progressive aphasia from typical dementia of the Alzheimer’s type.
A total of 27 logopenic primary progressive aphasia subjects underwent fluorodeoxyglucose positron emission tomography and volumetric magnetic resonance imaging. These subjects were matched to 27 controls and 27 subjects with dementia of the Alzheimer’s type. Patterns of atrophy and hypometabolism were assessed at the voxel and region-level using Statistical Parametric Mapping. Penalized logistic regression analysis was used to determine what combinations of regions best discriminate between groups.
Atrophy and hypometabolism was observed in lateral temporoparietal and medial parietal lobes, left greater than right, and left frontal lobe in the logopenic group. The logopenic group showed greater left inferior, middle and superior lateral temporal atrophy (inferior p = 0.02; middle p = 0.007, superior p = 0.002) and hypometabolism (inferior p = 0.006, middle p = 0.002, superior p = 0.001), and less right medial temporal atrophy (p = 0.02) and hypometabolism (p<0.001), and right posterior cingulate hypometabolism (p<0.001) than dementia of the Alzheimer’s type. An age-adjusted penalized logistic model incorporating atrophy and hypometabolism achieved excellent discrimination (area under the receiver operator characteristic curve = 0.89) between logopenic and dementia of the Alzheimer’s type subjects, with optimal discrimination achieved using right medial temporal and posterior cingulate hypometabolism, left inferior, middle and superior temporal hypometabolism, and left superior temporal volume.
Patterns of atrophy and hypometabolism both differ between logopenic primary progressive aphasia and dementia of the Alzheimer’s type and both modalities provide excellent discrimination between groups.
PMCID: PMC3633885  PMID: 23626825
21.  Non-Stationarity in the “Resting Brain’s” Modular Architecture 
PLoS ONE  2012;7(6):e39731.
Task-free functional magnetic resonance imaging (TF-fMRI) has great potential for advancing the understanding and treatment of neurologic illness. However, as with all measures of neural activity, variability is a hallmark of intrinsic connectivity networks (ICNs) identified by TF-fMRI. This variability has hampered efforts to define a robust metric of connectivity suitable as a biomarker for neurologic illness. We hypothesized that some of this variability rather than representing noise in the measurement process, is related to a fundamental feature of connectivity within ICNs, which is their non-stationary nature. To test this hypothesis, we used a large (n = 892) population-based sample of older subjects to construct a well characterized atlas of 68 functional regions, which were categorized based on independent component analysis network of origin, anatomical locations, and a functional meta-analysis. These regions were then used to construct dynamic graphical representations of brain connectivity within a sliding time window for each subject. This allowed us to demonstrate the non-stationary nature of the brain’s modular organization and assign each region to a “meta-modular” group. Using this grouping, we then compared dwell time in strong sub-network configurations of the default mode network (DMN) between 28 subjects with Alzheimer’s dementia and 56 cognitively normal elderly subjects matched 1∶2 on age, gender, and education. We found that differences in connectivity we and others have previously observed in Alzheimer’s disease can be explained by differences in dwell time in DMN sub-network configurations, rather than steady state connectivity magnitude. DMN dwell time in specific modular configurations may also underlie the TF-fMRI findings that have been described in mild cognitive impairment and cognitively normal subjects who are at risk for Alzheimer’s dementia.
PMCID: PMC3386248  PMID: 22761880
22.  Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech 
Brain  2012;135(5):1522-1536.
Apraxia of speech is a disorder of speech motor planning and/or programming that is distinguishable from aphasia and dysarthria. It most commonly results from vascular insults but can occur in degenerative diseases where it has typically been subsumed under aphasia, or it occurs in the context of more widespread neurodegeneration. The aim of this study was to determine whether apraxia of speech can present as an isolated sign of neurodegenerative disease. Between July 2010 and July 2011, 37 subjects with a neurodegenerative speech and language disorder were prospectively recruited and underwent detailed speech and language, neurological, neuropsychological and neuroimaging testing. The neuroimaging battery included 3.0 tesla volumetric head magnetic resonance imaging, [18F]-fluorodeoxyglucose and [11C] Pittsburg compound B positron emission tomography scanning. Twelve subjects were identified as having apraxia of speech without any signs of aphasia based on a comprehensive battery of language tests; hence, none met criteria for primary progressive aphasia. These subjects with primary progressive apraxia of speech included eight females and four males, with a mean age of onset of 73 years (range: 49–82). There were no specific additional shared patterns of neurological or neuropsychological impairment in the subjects with primary progressive apraxia of speech, but there was individual variability. Some subjects, for example, had mild features of behavioural change, executive dysfunction, limb apraxia or Parkinsonism. Voxel-based morphometry of grey matter revealed focal atrophy of superior lateral premotor cortex and supplementary motor area. Voxel-based morphometry of white matter showed volume loss in these same regions but with extension of loss involving the inferior premotor cortex and body of the corpus callosum. These same areas of white matter loss were observed with diffusion tensor imaging analysis, which also demonstrated reduced fractional anisotropy and increased mean diffusivity of the superior longitudinal fasciculus, particularly the premotor components. Statistical parametric mapping of the [18F]-fluorodeoxyglucose positron emission tomography scans revealed focal hypometabolism of superior lateral premotor cortex and supplementary motor area, although there was some variability across subjects noted with CortexID analysis. [11C]-Pittsburg compound B positron emission tomography binding was increased in only one of the 12 subjects, although it was unclear whether the increase was actually related to the primary progressive apraxia of speech. A syndrome characterized by progressive pure apraxia of speech clearly exists, with a neuroanatomic correlate of superior lateral premotor and supplementary motor atrophy, making this syndrome distinct from primary progressive aphasia.
PMCID: PMC3338923  PMID: 22382356
primary progressive apraxia of speech; apraxia of speech; primary progressive aphasia; voxel-based morphometry; diffusion tensor imaging; fluorodeoxyglucose; Pittsburg compound B; supplementary motor area
23.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 
Brain  2012;135(3):765-783.
Numerous kindreds with familial frontotemporal dementia and/or amyotrophic lateral sclerosis have been linked to chromosome 9, and an expansion of the GGGGCC hexanucleotide repeat in the non-coding region of chromosome 9 open reading frame 72 has recently been identified as the pathogenic mechanism. We describe the key characteristics in the probands and their affected relatives who have been evaluated at Mayo Clinic Rochester or Mayo Clinic Florida in whom the hexanucleotide repeat expansion were found. Forty-three probands and 10 of their affected relatives with DNA available (total 53 subjects) were shown to carry the hexanucleotide repeat expansion. Thirty-six (84%) of the 43 probands had a familial disorder, whereas seven (16%) appeared to be sporadic. Among examined subjects from the 43 families (n = 63), the age of onset ranged from 33 to 72 years (median 52 years) and survival ranged from 1 to 17 years, with the age of onset <40 years in six (10%) and >60 in 19 (30%). Clinical diagnoses among examined subjects included behavioural variant frontotemporal dementia with or without parkinsonism (n = 30), amyotrophic lateral sclerosis (n = 18), frontotemporal dementia/amyotrophic lateral sclerosis with or without parkinsonism (n = 12), and other various syndromes (n = 3). Parkinsonism was present in 35% of examined subjects, all of whom had behavioural variant frontotemporal dementia or frontotemporal dementia/amyotrophic lateral sclerosis as the dominant clinical phenotype. No subject with a diagnosis of primary progressive aphasia was identified with this mutation. Incomplete penetrance was suggested in two kindreds, and the youngest generation had significantly earlier age of onset (>10 years) compared with the next oldest generation in 11 kindreds. Neuropsychological testing showed a profile of slowed processing speed, complex attention/executive dysfunction, and impairment in rapid word retrieval. Neuroimaging studies showed bilateral frontal abnormalities most consistently, with more variable degrees of parietal with or without temporal changes; no case had strikingly focal or asymmetric findings. Neuropathological examination of 14 patients revealed a range of transactive response DNA binding protein molecular weight 43 pathology (10 type A and four type B), as well as ubiquitin-positive cerebellar granular neuron inclusions in all but one case. Motor neuron degeneration was detected in nine patients, including five patients without ante-mortem signs of motor neuron disease. While variability exists, most cases with this mutation have a characteristic spectrum of demographic, clinical, neuropsychological, neuroimaging and especially neuropathological findings.
PMCID: PMC3286335  PMID: 22366793
frontotemporal dementia; amyotrophic lateral sclerosis; motor neuron disease; TDP-43; neurogenetics; chromosome 9
24.  Functional Inferences Vary with the Method of Analysis in fMRI 
NeuroImage  2001;14(5):1122-1127.
Neuroanatomic substrates of specific cognitive functions have been inferred from anatomic distributions of activated pixels during fMRI studies. With declarative memory tasks, interest has focused on the extent to which various medial temporal lobe anatomic structures are activated while subjects encode new information. The aim of this project was to examine how commonly used variations in fMRI data processing methods affect the distribution of activation in anatomically defined medial temporal lobe regions of interest (ROIs) during a complex scene-encoding task. ROIs were drawn on an MRI anatomic template formed from 3d-SPGR scans of 8 subjects combined in Talairach space. Separate ROIs were drawn for the posterior and anterior hippocampal formation, parahippocampal gyrus, and entorhinal cortex. Twelve different activation maps were created for each subject by using four correlation coefficients and three cluster volumes. Friedman’s two-way ANOVA by ranks was used to test the hypothesis that the distribution of activated pixels among defined anatomic ROIs varied as a function of the data processing method.
By simply varying the combination of correlation-coefficient and cluster volume, significantly different distributions of activation within named medial temporal lobe structures were obtained from the same fMRI datasets (p<0.015; p<0.001). The number of subjects studied (n=8) is in a range commonly found in the literature yet this clearly resulted in spurious associations between processing parameter variations and activation distribution. Using data processing methods that are independent of the arbitrary selection of cutoff values for thresholding activation maps may reduce the likelihood of obtaining spurious results.
PMCID: PMC2744462  PMID: 11697943
25.  Head trauma and in vivo measures of amyloid and neurodegeneration in a population-based study 
Neurology  2014;82(1):70-76.
We determined whether head trauma was associated with amyloid deposition and neurodegeneration among individuals who were cognitively normal (CN) or had mild cognitive impairment (MCI).
Participants included 448 CN individuals and 141 individuals with MCI from the Mayo Clinic Study of Aging who underwent Pittsburgh compound B (PiB)-PET, fluorodeoxyglucose-PET, and MRI. Head trauma was defined as a self-reported brain injury with at least momentary loss of consciousness or memory. Regression models examined whether head trauma was associated with each neuroimaging variable (assessed as continuous and dichotomous measures) in both CN and MCI participants, controlling for age and sex.
Among 448 CN individuals, 74 (17%) self-reported a head trauma. There was no difference in any neuroimaging measure between CN subjects with and without head trauma. Of 141 participants with MCI, 25 (18%) self-reported a head trauma. MCI participants with a head trauma had higher amyloid levels (by an average 0.36 standardized uptake value ratio units, p = 0.002).
Among individuals with MCI, but not CN individuals, self-reported head trauma with at least momentary loss of consciousness or memory was associated with greater amyloid deposition, suggesting that head trauma may be associated with Alzheimer disease–related neuropathology. Differences between CN individuals and individuals with MCI raise questions about the relevance of head injury–PET abnormality findings in those with MCI.
PMCID: PMC3873622  PMID: 24371306

Results 1-25 (26)