PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Leaving tissue associated with infrequent intracranial EEG seizure onsets is compatible with post-operative seizure freedom 
Journal of pediatric epilepsy  2012;1(4):211-219.
Identify seizure onset electrodes that need to be resected for seizure freedom in children undergoing intracranial electroencephalography recording for treatment of medically refractory epilepsy. All children undergoing intracranial electroencephalography subdural grid electrode placement at the Children’s Hospital of Philadelphia from 2002-2008 were asked to enroll. We utilized intraoperative pictures to determine the location of the electrodes and define the resection cavity. A total of 15 patients had surgical fields that allowed for complete identification of the electrodes over the area of resection. Eight of 15 patients were seizure free after a follow up of 1.7 to 8 yr. Only one seizure-free patient had complete resection of all seizure onset associated tissue. Seizure free patients had resection of 64.1% of the seizure onset electrode associated tissue, compared to 35.2% in the not seizure free patients (p=0.05). Resection of tissue associated with infrequent seizure onsets did not appear to be important for seizure freedom. Resecting ≥ 90% of the electrodes from the predominant seizure contacts predicted post-operative seizure freedom (p=0.007). The best predictor of seizure freedom was resecting ≥ 90% of tissue involved in majority of a patient’s seizures. Resection of tissue under infrequent seizure onset electrodes was not necessary for seizure freedom.
doi:10.3233/PEP-12033
PMCID: PMC3930198  PMID: 24563805
Epilepsy; epilepsy surgery; cortical dysplasia; neocortical epilepsy; intracranial electroencephalography
2.  Forecasting Seizures in Dogs with Naturally Occurring Epilepsy 
PLoS ONE  2014;9(1):e81920.
Seizure forecasting has the potential to create new therapeutic strategies for epilepsy, such as providing patient warnings and delivering preemptive therapy. Progress on seizure forecasting, however, has been hindered by lack of sufficient data to rigorously evaluate the hypothesis that seizures are preceded by physiological changes, and are not simply random events. We investigated seizure forecasting in three dogs with naturally occurring focal epilepsy implanted with a device recording continuous intracranial EEG (iEEG). The iEEG spectral power in six frequency bands: delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), low-gamma (30–70 Hz), and high-gamma (70–180 Hz), were used as features. Logistic regression classifiers were trained to discriminate labeled pre-ictal and inter-ictal data segments using combinations of the band spectral power features. Performance was assessed on separate test data sets via 10-fold cross-validation. A total of 125 spontaneous seizures were detected in continuous iEEG recordings spanning 6.5 to 15 months from 3 dogs. When considering all seizures, the seizure forecasting algorithm performed significantly better than a Poisson-model chance predictor constrained to have the same time in warning for all 3 dogs over a range of total warning times. Seizure clusters were observed in all 3 dogs, and when the effect of seizure clusters was decreased by considering the subset of seizures separated by at least 4 hours, the forecasting performance remained better than chance for a subset of algorithm parameters. These results demonstrate that seizures in canine epilepsy are not randomly occurring events, and highlight the feasibility of long-term seizure forecasting using iEEG monitoring.
doi:10.1371/journal.pone.0081920
PMCID: PMC3885383  PMID: 24416133
3.  Proceedings of the Second International Workshop on Advances in Electrocorticography 
Epilepsy & behavior : E&B  2011;22(4):10.1016/j.yebeh.2011.09.028.
The Second International Workshop on Advances in Electrocorticography (ECoG) was convened in San Diego, CA, USA, on November 11–12, 2010. Between this meeting and the inaugural 2009 event, a much clearer picture has been emerging of cortical ECoG physiology and its relationship to local field potentials and single-cell recordings. Innovations in material engineering are advancing the goal of a stable long-term recording interface. Continued evolution of ECoG-driven brain–computer interface technology is determining innovation in neuroprosthetics. Improvements in instrumentation and statistical methodologies continue to elucidate ECoG correlates of normal human function as well as the ictal state. This proceedings document summarizes the current status of this rapidly evolving field.
doi:10.1016/j.yebeh.2011.09.028
PMCID: PMC3847909  PMID: 22036287
Electrocorticography; Brain–computer interface; High-frequency oscillations; Brain mapping; Seizure detection; Gamma-frequency electroencephalography; Neuroprosthetics; Subdural grid
4.  Mapping and mining interictal pathological gamma (30–100 Hz) oscillations with clinical intracranial EEG in patients with epilepsy 
Expert systems with applications  2012;39(8):7355-7370.
Localizing an epileptic network is essential for guiding neurosurgery and antiepileptic medical devices as well as elucidating mechanisms that may explain seizure-generation and epilepsy. There is increasing evidence that pathological oscillations may be specific to diseased networks in patients with epilepsy and that these oscillations may be a key biomarker for generating and indentifying epileptic networks. We present a semi-automated method that detects, maps, and mines pathological gamma (30–100 Hz) oscillations (PGOs) in human epileptic brain to possibly localize epileptic networks. We apply the method to standard clinical iEEG (<100 Hz) with interictal PGOs and seizures from six patients with medically refractory epilepsy. We demonstrate that electrodes with consistent PGO discharges do not always coincide with clinically determined seizure onset zone (SOZ) electrodes but at times PGO-dense electrodes include secondary seizure-areas (SS) or even areas without seizures (NS). In 4/5 patients with epilepsy surgery, we observe poor (Engel Class 4) post-surgical outcomes and identify more PGO-activity in SS or NS than in SOZ. Additional studies are needed to further clarify the role of PGOs in epileptic brain.
doi:10.1016/j.eswa.2012.01.071
PMCID: PMC3480232  PMID: 23105174
Epileptic network; Interictal epileptic discharge; Pathological gamma oscillation; Detection; Mapping; Data-mining
5.  Data mining neocortical high-frequency oscillations in epilepsy and controls 
Brain  2011;134(10):2948-2959.
Transient high-frequency (100–500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100–250 Hz) and fast ripple (250–500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100–500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies correlating high-frequency oscillations rates with seizure-onset zone, resected tissue and surgical outcome are required to determine the true predictive value.
doi:10.1093/brain/awr212
PMCID: PMC3187540  PMID: 21903727
high-frequency oscillations; epilepsy; intracranial EEG
6.  A Novel Implanted Device to Wirelessly Record and Analyze Continuous Intracranial Canine EEG 
Epilepsy research  2011;96(1-2):116-122.
We present results from continuous intracranial electroencephalographic (iEEG) monitoring in 6 dogs with naturally occurring epilepsy, a disorder similar to the human condition in its clinical presentation, epidemiology, electrophysiology and response to therapy. Recordings were obtained using a novel implantable device wirelessly linked to an external, portable real-time processing unit. We demonstrate previously uncharacterized intracranial seizure onset patterns in these animals that are strikingly similar in appearance to human partial onset epilepsy. We propose: (1) canine epilepsy as an appropriate model for testing human antiepileptic devices and new approaches to epilepsy surgery, and (2) this new technology as a versatile platform for evaluating seizures and response to therapy in the natural, ambulatory setting.
doi:10.1016/j.eplepsyres.2011.05.011
PMCID: PMC3175300  PMID: 21676591
7.  Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in vivo 
Nature Neuroscience  2011;14(12):1599-1605.
Arrays of electrodes for recording and stimulating the brain are used throughout clinical medicine and basic neuroscience research, yet are unable to sample large areas of the brain while maintaining high spatial resolution because of the need to individually wire each passive sensor at the electrode-tissue interface. To overcome this constraint, we have developed new devices integrating ultrathin and flexible silicon nanomembrane transistors into the electrode array, enabling new dense arrays of thousands of amplified and multiplexed sensors connected using many fewer wires. We used this system to record novel spatial properties of brain activity in vivo, including sleep spindles, single-trial visual evoked responses, and electrographic seizures. Our electrode array allowed us to discover that seizures may manifest as recurrent spiral waves which propagate in the neocortex. The developments reported here herald a new generation of diagnostic and therapeutic brain-machine interface (BMI) devices.
doi:10.1038/nn.2973
PMCID: PMC3235709  PMID: 22081157
Multielectrode array; electrode array; flexible electronics; multiplexed electrode; cortical surface electrode; foldable electrode; ECoG; μECoG; brain machine interface; high temporal resolution; high spatial resolution; spindle; visual neuroscience; spiral wave; epilepsy; seizure; epileptiform spike; interhemispheric fissure; silicon nanoribbon
8.  Microseizures and the spatiotemporal scales of human partial epilepsy 
Brain  2010;133(9):2789-2797.
Focal seizures appear to start abruptly and unpredictably when recorded from volumes of brain probed by clinical intracranial electroencephalograms. To investigate the spatiotemporal scale of focal epilepsy, wide-bandwidth electrophysiological recordings were obtained using clinical macro- and research microelectrodes in patients with epilepsy and control subjects with intractable facial pain. Seizure-like events not detectable on clinical macroelectrodes were observed on isolated microelectrodes. These ‘microseizures’ were sparsely distributed, more frequent in brain regions that generated seizures, and sporadically evolved into large-scale clinical seizures. Rare microseizures observed in control patients suggest that this phenomenon is ubiquitous, but their density distinguishes normal from epileptic brain. Epileptogenesis may involve the creation of these topographically fractured microdomains and ictogenesis (seizure generation), the dynamics of their interaction and spread.
doi:10.1093/brain/awq190
PMCID: PMC2929333  PMID: 20685804
epilepsy; seizure; intracranial EEG; microseizure; microcircuit; seizure generation; ictogenesis; epileptogenesis
9.  Mining terabytes of submillimeter-resolution ECoG datasets for neurophysiologic biomarkers 
Recent research in brain-machine interfaces and devices to treat neurological disease indicate that important network activity exists at temporal and spatial scales beyond the resolution of existing implantable devices. We present innovations in both hardware and software that allow sampling and interpretation of data from brain networks from hundreds or thousands of sensors at submillimeter resolution. These innovations consist of novel flexible, active electrode arrays and unsupervised algorithms for detecting and classifying neurophysiologic biomarkers, specifically high frequency oscillations. We propose these innovations as the foundation for a new generation of closed loop diagnostic and therapeutic medical devices, and brain-machine interfaces.
doi:10.1109/IEMBS.2010.5627681
PMCID: PMC3132566  PMID: 21097061
10.  Materials for Multifunctional Balloon Catheters With Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy 
Nature materials  2011;10(4):316-323.
Development of advanced surgical tools for minimally invasive procedures represents an activity of central importance to improvements in human health. A key materials challenge is in the realization of bio-compatible interfaces between the classes of semiconductor and sensor technologies that might be most useful in this context and the soft, curvilinear surfaces of the body. This paper describes a solution based on biocompatible materials and devices that integrate directly with the thin elastic membranes of otherwise conventional balloon catheters, to provide multimodal functionality suitable for clinical use. We present sensors for measuring temperature, flow, tactile, optical and electrophysiological data, together with radio frequency (RF) electrodes for controlled, local ablation of tissue. These components connect together in arrayed layouts designed to decouple their operation from large strain deformations associated with deployment and repeated inflation/deflation. Use of such ‘instrumented’ balloon catheter devices in live animal models and in vitro tests illustrates their operation in cardiac ablation therapy. These concepts have the potential for application in surgical systems of the future, not only those based on catheters but also on other platforms, such as surgical gloves.
doi:10.1038/nmat2971
PMCID: PMC3132573  PMID: 21378969
11.  Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis 
Brain : a journal of neurology  2006;129(Pt 4):911-922.
Experimental prolonged febrile seizures (FS) lead to structural and molecular changes that promote hippocampal hyperexcitability and reduce seizure threshold to further convulsants. However, whether these seizures provoke later-onset epilepsy, as has been suspected in humans, has remained unclear. Previously, intermittent EEGs with behavioural observations for motor seizures failed to demonstrate spontaneous seizures in adult rats subjected to experimental prolonged FS during infancy. Because limbic seizures may be behaviourally subtle, here we determined the presence of spontaneous limbic seizures using chronic video monitoring with concurrent hippocampal and cortical EEGs, in adult rats (starting around 3 months of age) that had sustained experimental FS on postnatal day 10. These subjects were compared with groups that had undergone hyperthermia but in whom seizures had been prevented (hyperthermic controls), as well as with normothermic controls. Only events that fulfilled both EEG and behavioural criteria, i.e. electro-clinical events, were considered spontaneous seizures. EEGs (over 400 recorded hours) were normal in all normothermic and hyperthermic control rats, and none of these animals developed spontaneous seizures. In contrast, prolonged early-life FS evoked spontaneous electro-clinical seizures in 6 out of 17 experimental rats (35.2%). These seizures consisted of sudden freezing (altered consciousness) and typical limbic automatisms that were coupled with polyspike/sharp-wave trains with increasing amplitude and slowing frequency on EEG. In addition, interictal epileptiform discharges were recorded in 15 (88.2%) of the experimental FS group and in none of the controls. The large majority of hippocampally-recorded seizures were heralded by diminished amplitude of cortical EEG, that commenced half a minute prior to the hippocampal ictus and persisted after seizure termination. This suggests a substantial perturbation of normal cortical neuronal activity by these limbic spontaneous seizures. In summary, prolonged experimental FS lead to later-onset limbic (temporal lobe) epilepsy in a significant proportion of rats, and to interictal epileptifom EEG abnormalities in most others, and thus represent a model that may be useful to study the relationship between FS and human temporal lobe epilepsy.
doi:10.1093/brain/awl018
PMCID: PMC3100674  PMID: 16446281
prolonged febrile seizures; temporal lobe epilepsy; video-EEG; rat; prospective study
12.  Interictal EEG spikes identify the region of seizure onset in some, but not all pediatric epilepsy patients 
Epilepsia  2009;51(4):592-601.
Purpose
The role of sharps and spikes, interictal epileptiform discharges (IEDs), in guiding epilepsy surgery in children remains controversial, particularly with intracranial EEG (IEEG). While ictal recording is the mainstay of localizing epileptic networks for surgical resection, current practice dictates removing regions generating frequent IEDs if they are near the ictal onset zone. Indeed, past studies suggest an inconsistent relationship between IED and seizure onset location, though these studies were based upon relatively short EEG epochs.
Methods
We employ a previously validated, computerized spike detector, to measure and localize IED activity over prolonged, representative segments of IEEG recorded from 19 children with intractable, mostly extra temporal lobe epilepsy. Approximately 8 hours of IEEG, randomly selected thirty-minute segments of continuous interictal IEEG per patient were analyzed over all intracranial electrode contacts.
Results
When spike frequency was averaged over the 16-time segments, electrodes with the highest mean spike frequency were found to be within the seizure onset region in 11 of 19 patients. There was significant variability between individual 30-minute segments in these patients, indicating that large statistical samples of interictal activity were required for improved localization. Low voltage fast EEG at seizure onset was the only clinical factor predicting IED localization to the seizure onset region.
Conclusions
Our data suggest that automated IED detection over multiple representative samples of IEEG may be of utility in planning epilepsy surgery for children with intractable epilepsy. Further research is required to better determine which patients may benefit from this technique a priori.
doi:10.1111/j.1528-1167.2009.02306.x
PMCID: PMC2907216  PMID: 19780794
Spike density; intracranial EEG; Seizure onset; Pediatric Epilepsy
13.  A Conformal, Bio-interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology 
Science translational medicine  2010;2(24):24ra22.
The sophistication and resolution of current implantable medical devices are limited by the need connect each sensor separately to data acquisition systems. The ability of these devices to sample and modulate tissues is further limited by the rigid, planar nature of the electronics and the electrode-tissue interface. Here, we report the development of a class of mechanically flexible silicon electronics for measuring signals in an intimate, conformal integrated mode on the dynamic, three dimensional surfaces of soft tissues in the human body. We illustrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating heart in vivo. The devices sample with simultaneous sub-millimeter and sub-millisecond resolution through 288 amplified and multiplexed channels. We use these systems to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This clinical-scale demonstration represents one example of many possible uses of this technology in minimally invasive medical devices.
[Conformal electronics and sensors intimately integrated with living tissues enable a new generation of implantable devices capable of addressing important problems in human health.]
doi:10.1126/scitranslmed.3000738
PMCID: PMC3039774  PMID: 20375008
14.  Dissolvable Films of Silk Fibroin for Ultrathin, Conformal Bio-Integrated Electronics 
Nature materials  2010;9(6):511-517.
Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain-machine interfaces. This paper describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable or surgical devices.
doi:10.1038/nmat2745
PMCID: PMC3034223  PMID: 20400953
15.  Continuous energy variation during the seizure cycle: towards an on-line accumulated energy 
Objective
Increases in accumulated energy on intracranial EEG are associated with oncoming seizures in retrospective studies, supporting the idea that seizures are generated over time. Published seizure prediction methods require comparison to ‘baseline’ data, sleep staging, and selecting seizures that are not clustered closely in time. In this study, we attempt to remove these constraints by using a continuously adapting energy threshold, and to identify stereotyped energy variations through the seizure cycle (inter-, pre-, post- and ictal periods).
Methods
Accumulated energy was approximated by using moving averages of signal energy, computed for window lengths of 1 and 20 min, and an adaptive decision threshold. Predictions occurred when energy within the shorter running window exceeded the decision threshold.
Results
Predictions for time horizons of less than 3 h did not achieve statistical significance in the data sets analyzed that had an average inter-seizure interval ranging from 2.9 to 8.6 h. 51.6% of seizures across all patients exhibited stereotyped pre-ictal energy bursting and quiet periods.
Conclusions
Accumulating energy alone is not sufficient for predicting seizures using a 20 min running baseline for comparison. Stereotyped energy patterns through the seizure cycle may provide clues to mechanisms underlying seizure generation.
Significance
Energy-based seizure prediction will require fusion of multiple complimentary features and perhaps longer running averages to compensate for post-ictal and sleep-induced energy changes.
doi:10.1016/j.clinph.2004.10.015
PMCID: PMC2941767  PMID: 15721065
Intracranial EEG energy; Interictal and ictal energy; Seizure prediction; Accumulated energy; Average inter-seizure interval
16.  Deep Brain Stimulation for Epilepsy 
Summary
Many patients suffer from medically refractory epilepsy and are not candidates for resective brain surgery. Success of deep brain stimulation (DBS) in relieving a significant amount of symptoms of various movement disorders paved the way for investigations into this modality for epilepsy. Open-label and small blinded-trials have provided promising evidence for the use of DBS in refractory seizures. However, the first randomized control trial of DBS of the anterior thalamic nucleus is currently underway. Furthermore, there are multiple potential targets as many neural regions have been implicated in seizure propagation. Thus, it is difficult at this time to make any definitive judgments about the efficacy of DBS for seizure control. Future study is necessary to identify a patient population for whom this technique would be indicated, the most efficacious target, and optimal stimulation parameters.
doi:10.1016/j.nurt.2007.10.065
PMCID: PMC2941772  PMID: 18164484
Deep brain stimulation; epilepsy; thalamus; seizure; closed-loop systems
17.  Hippocampal gamma oscillations increase with memory load 
Although the hippocampus plays a crucial role in encoding and retrieval of contextually-mediated “episodic” memories, considerable controversy surrounds the role of the hippocampus in short-term or working memory. To examine both hippocampal and neocortical contributions to working memory function, we recorded electrocorticographic (ECoG) activity from widespread cortical and subcortical sites as 20 neurosurgical patients performed working memory tasks. These recordings revealed significant increases in 48–90 Hz gamma oscillatory power with memory load for two classes of stimuli: letters and faces. Sites exhibiting gamma increases with memory load appeared primarily in the hippocampus and medial temporal lobe. These findings implicate gamma oscillatory activity in the maintenance of both letters and faces in working memory, and provide the first direct evidence for modulation of hippocampal gamma oscillations as humans perform a working memory task.
doi:10.1523/JNEUROSCI.0567-09.2010
PMCID: PMC2835496  PMID: 20164353
oscillations; working memory; ECoG; memory; EEG; hippocampus
18.  Technology Insight: neuroengineering and epilepsy—designing devices for seizure control 
SUMMARY
Despite substantial innovations in antiepileptic drug therapy over the past 15 years, the proportion of patients with uncontrolled epilepsy has not changed, highlighting the need for new treatments. New implantable antiepileptic devices, which are currently under development and in pivotal clinical trials, hold great promise for improving the quality of life for millions of people with epileptic seizures worldwide. A broad range of strategies is currently being investigated, using various modes of control and intervention in an attempt to stop seizures. The success of these devices rests upon collaboration between neuroengineers, physicians and industry to adapt new technologies for clinical use. The initial results are exciting, but considerable development and controlled clinical trials will be required before these treatments earn a place in our standard of clinical care.
doi:10.1038/ncpneuro0750
PMCID: PMC2904395  PMID: 18301414
closed-loop devices; epilepsy; neuroengineering; open-loop devices; seizure control
19.  Gamma Oscillations Distinguish True From False Memories 
Psychological science  2007;18(11):927-932.
To test whether distinct patterns of electrophysiological activity prior to a response can distinguish true from false memories, we analyzed intracranial electroencephalographic recordings while 52 patients undergoing treatment for epilepsy performed a verbal free-recall task. These analyses revealed that the same pattern of gamma-band (28–100 Hz) oscillatory activity that predicts successful memory formation at item encoding—increased gamma power in the hippocampus, prefrontal cortex, and left temporal lobe—reemerges at retrieval to distinguish correct from incorrect responses. The timing of these oscillatory effects suggests that self-cued memory retrieval begins in the hippocampus and then spreads to the cortex. Thus, retrieval of true, as compared with false, memories induces a distinct pattern of gamma oscillations, possibly reflecting recollection of contextual information associated with past experience.
doi:10.1111/j.1467-9280.2007.02003.x
PMCID: PMC2897900  PMID: 17958703
20.  The Statistics of a Practical Seizure Warning System 
Journal of neural engineering  2008;5(4):392-401.
Statistical methods for evaluating seizure prediction algorithms are controversial and a primary barrier to realizing clinical applications. Experts agree that these algorithms must, at a minimum, perform better than chance, but the proper method for comparing to chance is in debate. We derive a statistical framework for this comparison, the expected performance of a chance predictor according to a predefined scoring rule, which is in turn used as the control in a hypothesis test. We verify the expected performance of chance prediction using Monte Carlo simulations that generate random, simulated seizure warnings of variable duration. We propose a new test metric, the difference between algorithm and chance sensitivities given a constraint on proportion of time spent in warning, and use a simple spectral power-based measure to demonstrate the utility of the metric in four patients undergoing intracranial EEG monitoring during evaluation for epilepsy surgery. The methods are broadly applicable to other scoring rules. We present them as an advance in the statistical evaluation of a practical seizure advisory system.
doi:10.1088/1741-2560/5/4/004
PMCID: PMC2888045  PMID: 18827312
seizure prediction; EEG; epilepsy; intracranial; statistics; brain
21.  Right-lateralized Brain Oscillations in Human Spatial Navigation 
Journal of cognitive neuroscience  2010;22(5):824-836.
During spatial navigation, lesion and functional imaging studies suggest that the right hemisphere has a unique functional role. However, studies of direct human brain recordings have not reported interhemisphere differences in navigation-related oscillatory activity. We investigated this apparent discrepancy using intracranial electroencephalographic recordings from 24 neurosurgical patients playing a virtual taxi driver game. When patients were virtually moving in the game, brain oscillations at various frequencies increased in amplitude compared with periods of virtual stillness. Using log-linear analysis, we analyzed the region and frequency specificities of this pattern and found that neocortical movement-related gamma oscillations (34–54 Hz) were significantly lateralized to the right hemisphere, especially in posterior neocortex. We also observed a similar right lateralization of gamma oscillations related to searching for objects at unknown virtual locations. Thus, our results indicate that gamma oscillations in the right neocortex play a special role in human spatial navigation.
doi:10.1162/jocn.2009.21240
PMCID: PMC2839416  PMID: 19400683
22.  A Time-Frequency Functional Model for Locally Stationary Time Series Data 
Unlike traditional time series analysis that focuses on one long time series, in many biomedical experiments, it is common to collect multiple time series and focus on how the design covariates impact the patterns of stochastic variation over time. In this article, we propose a time-frequency functional model for a family of time series indexed by a set of covariates. This model can be used to compare groups of time series in terms of the patterns of stochastic variation and to estimate the covariate effects. We focus our development on locally stationary time series and propose the covariate-indexed locally stationary setting, which include stationary processes as special cases. We use smoothing spline ANOVA models for the time-frequency coefficients. A two-stage procedure is introduced for estimation. To reduce the computational demand, we develop an equivalent state space model to the proposed model with an efficient algorithm. We also propose a new simulation method to generate replicated time series from their design spectra. An epileptic intracranial electroencephalogram (IEEG) dataset is analyzed for illustration.
doi:10.1198/jcgs.2009.06109
PMCID: PMC2836603  PMID: 20228961
EEG; Epilepsy; Functional data analysis; Seizure; Smoothing spline; SS ANOVA; State space model
23.  Intracranial electroencephalography reveals two distinct similarity effects during item recognition 
Brain research  2009;1299:33-44.
Behavioral studies of visual recognition memory indicate that old/new decisions reflect both the similarity of the probe to the studied items (probe–item similarity) and the similarities among the studied items themselves (list homogeneity). Recording intracranial electroencephalography from 1,155 electrodes across 15 patients, we examined the oscillatory correlates of probe–item similarity and homogeneity effects in short-term recognition memory for synthetic faces. Frontal areas show increases in low-frequency oscillations with both probe–item and item–item similarity, whereas temporal lobe areas show distinct oscillatory correlates for probe–item similarity and homogeneity in the gamma band. We discuss these frontal low-frequency effects and the dissociation in the temporal lobe in terms of recent computational models of visual recognition memory.
doi:10.1016/j.brainres.2009.07.016
PMCID: PMC2763991  PMID: 19615982
oscillations; recognition memory; cognitive modeling; similarity
24.  High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings 
Brain : a journal of neurology  2008;131(Pt 4):928-937.
Neuronal oscillations span a wide range of spatial and temporal scales that extend beyond traditional clinical EEG. Recent research suggests that high-frequency oscillations (HFO), in the ripple (80–250Hz) and fast ripple (250–1000Hz) frequency range, may be signatures of epileptogenic brain and involved in the generation of seizures. However, most research investigating HFO in humans comes from microwire recordings, whose relationship to standard clinical intracranial EEG (iEEG) has not been explored. In this study iEEG recordings (DC − 9000Hz) were obtained from human medial temporal lobe using custom depth electrodes containing both microwires and clinical macroelectrodes. Ripple and fast-ripple HFO recorded from both microwires and clinical macroelectrodes were increased in seizure generating brain regions compared to control regions. The distribution of HFO frequencies recorded from the macroelectrodes was concentrated in the ripple frequency range, compared to a broad distribution of HFO frequencies recorded from microwires. The average frequency of ripple HFO recorded from macroelectrodes was lower than that recorded from microwires (143.3 ± 49.3 Hz versus 116.3 ± 38.4, Wilcoxon rank sum P<0.0001). Fast-ripple HFO were most often recorded on a single microwire, supporting the hypothesis that fast-ripple HFO are primarily generated by highly localized, sub-millimeter scale neuronal assemblies that are most effectively sampled by microwire electrodes. Future research will address the clinical utility of these recordings for localizing epileptogenic networks and understanding seizure generation.
doi:10.1093/brain/awn006
PMCID: PMC2760070  PMID: 18263625
high-frequency oscillations; ripple; fast ripple; intracranial EEG; epilepsy
25.  A Stochastic Framework for Evaluating Seizure Prediction Algorithms Using Hidden Markov Models 
Journal of neurophysiology  2006;97(3):2525-2532.
Responsive, implantable stimulation devices to treat epilepsy are now in clinical trials. New evidence suggests that these devices may be more effective when they deliver therapy before seizure onset. Despite years of effort, prospective seizure prediction, which could improve device performance, remains elusive. In large part, this is explained by lack of agreement on a statistical framework for modeling seizure generation and a method for validating algorithm performance. We present a novel stochastic framework based on a three-state hidden Markov model (HMM) (representing interictal, preictal, and seizure states) with the feature that periods of increased seizure probability can transition back to the interictal state. This notion reflects clinical experience and may enhance interpretation of published seizure prediction studies. Our model accommodates clipped EEG segments and formalizes intuitive notions regarding statistical validation. We derive equations for type I and type II errors as a function of the number of seizures, duration of interictal data, and prediction horizon length and we demonstrate the model’s utility with a novel seizure detection algorithm that appeared to predicted seizure onset. We propose this framework as a vital tool for designing and validating prediction algorithms and for facilitating collaborative research in this area.
doi:10.1152/jn.00190.2006
PMCID: PMC2230664  PMID: 17021032

Results 1-25 (26)