PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Correction: RBFOX1 and RBFOX3 Mutations in Rolandic Epilepsy 
PLoS ONE  2013;8(10):10.1371/annotation/f6aed47b-9135-45f5-bfdd-f4ceb33c8561.
doi:10.1371/annotation/f6aed47b-9135-45f5-bfdd-f4ceb33c8561
PMCID: PMC3823558  PMID: 24250743
2.  Episodic itch in a case of spinal glioma 
BMC Neurology  2013;13:124.
Background
Itch is a frequent complaint reported by patients and is usually ascribed to dermatological or metabolic causes. In neurological disorders, however, it is a very unusual symptom and thus its neurological aetiology is likely to be overlooked. There are only very few reports about permanent itch related to lesions of the central nervous system. To our knowledge we report the first case of episodic itch associated with a central nervous lesion.
Case presentation
A 74-year-old female suffered from long-standing episodes of itch of the dermatomes C2 to C6 on the right side that was refractory to any treatment. On occurrence it propagated in a proximal to distal fashion. Between the episodes the patient was asymptomatic. MRI of the cervical spine uncovered a spinal glioma that matched the location of the symptoms. Treatment with gabapentin led to a prompt reduction of the symptoms.
Conclusion
Patients with intractable pruritus and dermatomal presentation ought to undergo neurological examination and spinal cord imaging. Thus, ongoing frustrating and sometimes even harmful treatment trials could be avoided.
doi:10.1186/1471-2377-13-124
PMCID: PMC3848910  PMID: 24059641
Itch; Spine; Glioma; MRI; Gabapentin
3.  RBFOX1 and RBFOX3 Mutations in Rolandic Epilepsy 
PLoS ONE  2013;8(9):e73323.
Partial deletions of the gene encoding the neuronal splicing regulator RBFOX1 have been reported in a range of neurodevelopmental diseases, including idiopathic generalized epilepsy. The RBFOX1 protein and its homologues (RBFOX2 and RBFOX3) regulate alternative splicing of many neuronal transcripts involved in the homeostatic control of neuronal excitability. In this study, we explored if structural microdeletions and exonic sequence variations in RBFOX1, RBFOX2, RBFOX3 confer susceptibility to rolandic epilepsy (RE), a common idiopathic focal childhood epilepsy. By high-density SNP array screening of 289 unrelated RE patients, we identified two hemizygous deletions, a 365 kb deletion affecting two untranslated 5′-terminal exons of RBFOX1 and a 43 kb deletion spanning exon 3 of RBFOX3. Exome sequencing of 242 RE patients revealed two novel probably deleterious variants in RBFOX1, a frameshift mutation (p.A233Vfs*74) and a hexanucleotide deletion (p.A299_A300del), and a novel nonsense mutation in RBFOX3 (p.Y287*). Although the three variants were inherited from unaffected parents, they were present in all family members exhibiting the RE trait clinically or electroencephalographically with only one exception. In contrast, no deleterious mutations of RBFOX1 and RBFOX3 were found in the exomes of 6503 non-RE subjects deposited in the Exome Variant Server database. The observed RBFOX3 exon 3 deletion and nonsense mutation suggest that RBFOX3 represents a novel risk factor for RE, indicating that exon deletions and truncating mutations of RBFOX1 and RBFOX3 contribute to the genetic variance of partial and generalized idiopathic epilepsy syndromes.
doi:10.1371/journal.pone.0073323
PMCID: PMC3765197  PMID: 24039908
4.  Regulation of ClC-2 gating by intracellular ATP 
Pflugers Archiv  2013;465:1423-1437.
ClC-2 is a voltage-dependent chloride channel that activates slowly at voltages negative to the chloride reversal potential. Adenosine triphosphate (ATP) and other nucleotides have been shown to bind to carboxy-terminal cystathionine-ß-synthase (CBS) domains of ClC-2, but the functional consequences of binding are not sufficiently understood. We here studied the effect of nucleotides on channel gating using single-channel and whole-cell patch clamp recordings on transfected mammalian cells. ATP slowed down macroscopic activation and deactivation time courses in a dose-dependent manner. Removal of the complete carboxy-terminus abolishes the effect of ATP, suggesting that CBS domains are necessary for ATP regulation of ClC-2 gating. Single-channel recordings identified long-lasting closed states of ATP-bound channels as basis of this gating deceleration. ClC-2 channel dimers exhibit two largely independent protopores that are opened and closed individually as well as by a common gating process. A seven-state model of common gating with altered voltage dependencies of opening and closing transitions for ATP-bound states correctly describes the effects of ATP on macroscopic and microscopic ClC-2 currents. To test for a potential pathophysiological impact of ClC-2 regulation by ATP, we studied ClC-2 channels carrying naturally occurring sequence variants found in patients with idiopathic generalized epilepsy, G715E, R577Q, and R653T. All naturally occurring sequence variants accelerate common gating in the presence but not in the absence of ATP. We propose that ClC-2 uses ATP as a co-factor to slow down common gating for sufficient electrical stability of neurons under physiological conditions.
Electronic supplementary material
The online version of this article (doi:10.1007/s00424-013-1286-0) contains supplementary material, which is available to authorized users.
doi:10.1007/s00424-013-1286-0
PMCID: PMC3778897  PMID: 23632988
Chloride channel; Single-channel recording; Channel gating; Epilepsy
5.  Genetic testing in the epilepsies—Report of the ILAE Genetics Commission 
Epilepsia  2010;51(4):655-670.
SUMMARY
In this report, the International League Against Epilepsy (ILAE) Genetics Commission discusses essential issues to be considered with regard to clinical genetic testing in the epilepsies. Genetic research on the epilepsies has led to the identification of more than 20 genes with a major effect on susceptibility to idiopathic epilepsies. The most important potential clinical application of these discoveries is genetic testing: the use of genetic information, either to clarify the diagnosis in people already known or suspected to have epilepsy (diagnostic testing), or to predict onset of epilepsy in people at risk because of a family history (predictive testing). Although genetic testing has many potential benefits, it also has potential harms, and assessment of these potential benefits and harms in particular situations is complex. Moreover, many treating clinicians are unfamiliar with the types of tests available, how to access them, how to decide whether they should be offered, and what measures should be used to maximize benefit and minimize harm to their patients. Because the field is moving rapidly, with new information emerging practically every day, we present a framework for considering the clinical utility of genetic testing that can be applied to many different syndromes and clinical contexts. Given the current state of knowledge, genetic testing has high0020clinical utility in few clinical contexts, but in some of these it carries implications for daily clinical practice.
doi:10.1111/j.1528-1167.2009.02429.x
PMCID: PMC2855784  PMID: 20100225
Epilepsy; Seizures; Genetics; Genetic testing; SCN1A
6.  15q13.3 microdeletions increase risk of idiopathic generalized epilepsy 
Nature genetics  2009;41(2):160-162.
We identified 15q13.3 microdeletions encompassing the CHRNA7 gene in 12 of 1,223 individuals with idiopathic generalized epilepsy (IGE), which were not detected in 3,699 controls (joint P = 5.32 × 10−8). Most deletion carriers showed common IGE syndromes without other features previously associated with 15q13.3 microdeletions, such as intellectual disability, autism or schizophrenia. Our results indicate that 15q13.3 microdeletions constitute the most prevalent risk factor for common epilepsies identified to date.
doi:10.1038/ng.292
PMCID: PMC3026630  PMID: 19136953
7.  Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies 
Brain  2009;133(1):23-32.
Idiopathic generalized epilepsies account for 30% of all epilepsies. Despite a predominant genetic aetiology, the genetic factors predisposing to idiopathic generalized epilepsies remain elusive. Studies of structural genomic variations have revealed a significant excess of recurrent microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 in various neuropsychiatric disorders including autism, intellectual disability and schizophrenia. Microdeletions at 15q13.3 have recently been shown to constitute a strong genetic risk factor for common idiopathic generalized epilepsy syndromes, implicating that other recurrent microdeletions may also be involved in epileptogenesis. This study aimed to investigate the impact of five microdeletions at the genomic hotspot regions 1q21.1, 15q11.2, 16p11.2, 16p13.11 and 22q11.2 on the genetic risk to common idiopathic generalized epilepsy syndromes. The candidate microdeletions were assessed by high-density single nucleotide polymorphism arrays in 1234 patients with idiopathic generalized epilepsy from North-western Europe and 3022 controls from the German population. Microdeletions were validated by quantitative polymerase chain reaction and their breakpoints refined by array comparative genomic hybridization. In total, 22 patients with idiopathic generalized epilepsy (1.8%) carried one of the five novel microdeletions compared with nine controls (0.3%) (odds ratio = 6.1; 95% confidence interval 2.8–13.2; χ2 = 26.7; 1 degree of freedom; P = 2.4 × 10−7). Microdeletions were observed at 1q21.1 [Idiopathic generalized epilepsy (IGE)/control: 1/1], 15q11.2 (IGE/control: 12/6), 16p11.2 IGE/control: 1/0, 16p13.11 (IGE/control: 6/2) and 22q11.2 (IGE/control: 2/0). Significant associations with IGEs were found for the microdeletions at 15q11.2 (odds ratio = 4.9; 95% confidence interval 1.8–13.2; P = 4.2 × 10−4) and 16p13.11 (odds ratio = 7.4; 95% confidence interval 1.3–74.7; P = 0.009). Including nine patients with idiopathic generalized epilepsy in this cohort with known 15q13.3 microdeletions (IGE/control: 9/0), parental transmission could be examined in 14 families. While 10 microdeletions were inherited (seven maternal and three paternal transmissions), four microdeletions occurred de novo at 15q13.3 (n = 1), 16p13.11 (n = 2) and 22q11.2 (n = 1). Eight of the transmitting parents were clinically unaffected, suggesting that the microdeletion itself is not sufficient to cause the epilepsy phenotype. Although the microdeletions investigated are individually rare (<1%) in patients with idiopathic generalized epilepsy, they collectively seem to account for a significant fraction of the genetic variance in common idiopathic generalized epilepsy syndromes. The present results indicate an involvement of microdeletions at 15q11.2 and 16p13.11 in epileptogenesis and strengthen the evidence that recurrent microdeletions at 15q11.2, 15q13.3 and 16p13.11 confer a pleiotropic susceptibility effect to a broad range of neuropsychiatric disorders.
doi:10.1093/brain/awp262
PMCID: PMC2801323  PMID: 19843651
idiopathic generalized epilepsy; microdeletions; association; genetics
8.  Axon initial segment dysfunction in a mouse model of genetic epilepsy with febrile seizures plus 
The Journal of Clinical Investigation  2010;120(8):2661-2671.
Febrile seizures are a common childhood seizure disorder and a defining feature of genetic epilepsy with febrile seizures plus (GEFS+), a syndrome frequently associated with Na+ channel mutations. Here, we describe the creation of a knockin mouse heterozygous for the C121W mutation of the β1 Na+ channel accessory subunit seen in patients with GEFS+. Heterozygous mice with increased core temperature displayed behavioral arrest and were more susceptible to thermal challenge than wild-type mice. Wild-type β1 was most concentrated in the membrane of axon initial segments (AIS) of pyramidal neurons, while the β1(C121W) mutant subunit was excluded from AIS membranes. In addition, AIS function, an indicator of neuronal excitability, was substantially enhanced in hippocampal pyramidal neurons of the heterozygous mouse specifically at higher temperatures. Computational modeling predicted that this enhanced excitability was caused by hyperpolarized voltage activation of AIS Na+ channels. This heat-sensitive increased neuronal excitability presumably contributed to the heightened thermal seizure susceptibility and epileptiform discharges seen in patients and mice with β1(C121W) subunits. We therefore conclude that Na+ channel β1 subunits modulate AIS excitability and that epilepsy can arise if this modulation is impaired.
doi:10.1172/JCI42219
PMCID: PMC2912193  PMID: 20628201
9.  Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1 
Brain  2008;131(7):1831-1844.
Paroxysmal exercise-induced dyskinesia (PED) can occur in isolation or in association with epilepsy, but the genetic causes and pathophysiological mechanisms are still poorly understood. We performed a clinical evaluation and genetic analysis in a five-generation family with co-occurrence of PED and epilepsy (n = 39), suggesting that this combination represents a clinical entity. Based on a whole genome linkage analysis we screened SLC2A1, encoding the glucose transporter of the blood-brain-barrier, GLUT1 and identified heterozygous missense and frameshift mutations segregating in this and three other nuclear families with a similar phenotype. PED was characterized by choreoathetosis, dystonia or both, affecting mainly the legs. Predominant epileptic seizure types were primary generalized. A median CSF/blood glucose ratio of 0.52 (normal >0.60) in the patients and a reduced glucose uptake by mutated transporters compared with the wild-type as determined in Xenopus oocytes confirmed a pathogenic role of these mutations. Functional imaging studies implicated alterations in glucose metabolism in the corticostriate pathways in the pathophysiology of PED and in the frontal lobe cortex in the pathophysiology of epileptic seizures. Three patients were successfully treated with a ketogenic diet. In conclusion, co-occurring PED and epilepsy can be due to autosomal dominant heterozygous SLC2A1 mutations, expanding the phenotypic spectrum associated with GLUT1 deficiency and providing a potential new treatment option for this clinical syndrome.
doi:10.1093/brain/awn113
PMCID: PMC2442425  PMID: 18577546
GLUT1; paroxysmal dyskinesia; exercise-induced; GLUT1 deficiency syndrome; ketogenic diet
10.  GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak 
The Journal of Clinical Investigation  2008;118(6):2157-2168.
Paroxysmal dyskinesias are episodic movement disorders that can be inherited or are sporadic in nature. The pathophysiology underlying these disorders remains largely unknown but may involve disrupted ion homeostasis due to defects in cell-surface channels or nutrient transporters. In this study, we describe a family with paroxysmal exertion-induced dyskinesia (PED) over 3 generations. Their PED was accompanied by epilepsy, mild developmental delay, reduced CSF glucose levels, hemolytic anemia with echinocytosis, and altered erythrocyte ion concentrations. Using a candidate gene approach, we identified a causative deletion of 4 highly conserved amino acids (Q282_S285del) in the pore region of the glucose transporter 1 (GLUT1). Functional studies in Xenopus oocytes and human erythrocytes revealed that this mutation decreased glucose transport and caused a cation leak that alters intracellular concentrations of sodium, potassium, and calcium. We screened 4 additional families, in which PED is combined with epilepsy, developmental delay, or migraine, but not with hemolysis or echinocytosis, and identified 2 additional GLUT1 mutations (A275T, G314S) that decreased glucose transport but did not affect cation permeability. Combining these data with brain imaging studies, we propose that the dyskinesias result from an exertion-induced energy deficit that may cause episodic dysfunction of the basal ganglia, and that the hemolysis with echinocytosis may result from alterations in intracellular electrolytes caused by a cation leak through mutant GLUT1.
doi:10.1172/JCI34438
PMCID: PMC2350432  PMID: 18451999

Results 1-10 (10)