Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Familial cosegregation of rare genetic variants with disease in complex disorders 
Family-based designs are increasingly being used for identification of rare variants in complex disorders. This paper addresses two questions related to the utility of these designs. First, under what circumstances are rare disease-related variants expected to cosegregate with disease in families? Second, under what circumstances is a disease–variant association expected to be greater in studies restricted to familial cases than in studies of unselected cases? To investigate these questions, we developed a probability model of disease causation involving two loci. To address cosegregation, we examined the probability that an affected first-degree relative of a variant-carrying proband would also carry the variant. We find that this probability increases with increasing odds ratio (OR) for the variant, but declines with increasing sibling recurrence risk ratio (λs). For example, under reasonable assumptions, the 15q13.3 microdeletion in idiopathic generalized epilepsy, with an OR estimate of 68 in large case–control studies, is expected to be present in >95% of affected first-degree relatives of variant-carrying probands. However, for a variant with OR=5, the probability an affected relative has the variant ranges from 82% (when λs=2) to 58% (when λs=50). We also find that restriction of a study to familial cases does not necessarily increase a rare variant's association with disease, especially if λs is high and the variant contributes little to overall disease familial aggregation. These findings provide guidance for the design of family-based studies of rare variants in complex disorders.
PMCID: PMC3598309  PMID: 23010752
rare variant; epidemiology; familial risk; microdeletion; epilepsy; genome sequencing
2.  Genetics of the epilepsies: where are we and where are we going? 
Current opinion in neurology  2013;26(2):179-185.
Purpose of the review
We aim to review the most recent advances in the field of epilepsy genetics with particular focus on the progress in gene discovery in monogenic epilepsies, identification of risk genes in complex genetic epilepsies and recent findings in the field of epilepsy pharmacogenomics.
Recent findings
During the last 12 months, the use of massive parallel sequencing technologies has allowed for the discovery of several genes for monogenic epilepsies. Most importantly, PRRT2 was identified as the long-sought gene for Benign Familial Infantile Seizures (BFIS). Mutations in KCNT1 were found in two seemingly unrelated monogenic epilepsies including Malignant Migrating Partial Seizures of Infancy (MMPSI) and severe Autosomal Dominant Nocturnal Frontal Lobe Epilepsy (ADNFLE). A genome-wide association study in Idiopathic Generalized Epilepsy (IGE) revealed the first common risk variants for human seizure disorders including variants in VRK2, PNPO and SCN1A. Furthermore, a landmark study provided evidence that screening for the HLAB*1502 variant may prevent carbamazepine-induced side effects in the Taiwanese population. Also, HLA-A*3101 variants were identified as a risk factor for carbamazepine side effects in Europeans.
Novel technologies and an unprecedented level of international collaboration has resulted in novel genes for monogenic and complex genetic epilepsies as well as risk factors for side effects of antiepileptic drugs. This review provides an overview of the most relevant studies in the last year and highlights the future direction of the field.
PMCID: PMC3781236  PMID: 23429546
Epilepsy; genetics; pharmacogenomics; epileptic encephalopathies
3.  The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data 
Nucleic Acids Research  2013;42(Database issue):D966-D974.
The Human Phenotype Ontology (HPO) project, available at, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online.
PMCID: PMC3965098  PMID: 24217912
4.  Absence Seizures with Intellectual Disability as a phenotype of the 15q13.3 microdeletion syndrome 
Epilepsia  2011;52(12):e194-e198.
15q13.3 microdeletions are the most common genetic findings in Idiopathic Generalized Epilepsies identified to date, present in up to 1% of patients. In addition, 15q13.3 microdeletions have been described in patients with epilepsy as part of a complex neurodevelopmental phenotype. We analyzed a cohort of 570 patients with various pediatric epilepsies for 15q13.3 microdeletions. Screening was performed using quantitative polymerase chain reaction, deletions were confirmed by array comparative genomic hybridization. We carried out detailed phenotyping of deletion carriers. In total, we identified four pediatric patients with 15q13.3 microdeletions including one previously described patient. 2/4 deletions were de novo, 1 deletion was inherited from an unaffected parent, and in one patient, inheritance is unknown. All four patients had absence epilepsy with various degrees of intellectual disability. We suggest that absence epilepsy accompanied by intellectual disability may represent a common phenotype of the 15q13.3 microdeletion in pediatric epilepsy patients.
PMCID: PMC3270691  PMID: 22050399
Intellectual disability; IGE
5.  15q13.3 microdeletions increase risk of idiopathic generalized epilepsy 
Nature genetics  2009;41(2):160-162.
We identified 15q13.3 microdeletions encompassing the CHRNA7 gene in 12 of 1,223 individuals with idiopathic generalized epilepsy (IGE), which were not detected in 3,699 controls (joint P = 5.32 × 10−8). Most deletion carriers showed common IGE syndromes without other features previously associated with 15q13.3 microdeletions, such as intellectual disability, autism or schizophrenia. Our results indicate that 15q13.3 microdeletions constitute the most prevalent risk factor for common epilepsies identified to date.
PMCID: PMC3026630  PMID: 19136953
6.  Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies 
Brain  2009;133(1):23-32.
Idiopathic generalized epilepsies account for 30% of all epilepsies. Despite a predominant genetic aetiology, the genetic factors predisposing to idiopathic generalized epilepsies remain elusive. Studies of structural genomic variations have revealed a significant excess of recurrent microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 in various neuropsychiatric disorders including autism, intellectual disability and schizophrenia. Microdeletions at 15q13.3 have recently been shown to constitute a strong genetic risk factor for common idiopathic generalized epilepsy syndromes, implicating that other recurrent microdeletions may also be involved in epileptogenesis. This study aimed to investigate the impact of five microdeletions at the genomic hotspot regions 1q21.1, 15q11.2, 16p11.2, 16p13.11 and 22q11.2 on the genetic risk to common idiopathic generalized epilepsy syndromes. The candidate microdeletions were assessed by high-density single nucleotide polymorphism arrays in 1234 patients with idiopathic generalized epilepsy from North-western Europe and 3022 controls from the German population. Microdeletions were validated by quantitative polymerase chain reaction and their breakpoints refined by array comparative genomic hybridization. In total, 22 patients with idiopathic generalized epilepsy (1.8%) carried one of the five novel microdeletions compared with nine controls (0.3%) (odds ratio = 6.1; 95% confidence interval 2.8–13.2; χ2 = 26.7; 1 degree of freedom; P = 2.4 × 10−7). Microdeletions were observed at 1q21.1 [Idiopathic generalized epilepsy (IGE)/control: 1/1], 15q11.2 (IGE/control: 12/6), 16p11.2 IGE/control: 1/0, 16p13.11 (IGE/control: 6/2) and 22q11.2 (IGE/control: 2/0). Significant associations with IGEs were found for the microdeletions at 15q11.2 (odds ratio = 4.9; 95% confidence interval 1.8–13.2; P = 4.2 × 10−4) and 16p13.11 (odds ratio = 7.4; 95% confidence interval 1.3–74.7; P = 0.009). Including nine patients with idiopathic generalized epilepsy in this cohort with known 15q13.3 microdeletions (IGE/control: 9/0), parental transmission could be examined in 14 families. While 10 microdeletions were inherited (seven maternal and three paternal transmissions), four microdeletions occurred de novo at 15q13.3 (n = 1), 16p13.11 (n = 2) and 22q11.2 (n = 1). Eight of the transmitting parents were clinically unaffected, suggesting that the microdeletion itself is not sufficient to cause the epilepsy phenotype. Although the microdeletions investigated are individually rare (<1%) in patients with idiopathic generalized epilepsy, they collectively seem to account for a significant fraction of the genetic variance in common idiopathic generalized epilepsy syndromes. The present results indicate an involvement of microdeletions at 15q11.2 and 16p13.11 in epileptogenesis and strengthen the evidence that recurrent microdeletions at 15q11.2, 15q13.3 and 16p13.11 confer a pleiotropic susceptibility effect to a broad range of neuropsychiatric disorders.
PMCID: PMC2801323  PMID: 19843651
idiopathic generalized epilepsy; microdeletions; association; genetics
7.  Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance 
Human Molecular Genetics  2009;18(19):3626-3631.
Microdeletion at chromosomal position 15q13.3 has been described in intellectual disability, autism spectrum disorders, schizophrenia and recently in idiopathic generalized epilepsy (IGE). Using independent IGE cohorts, we first aimed to confirm the association of 15q13.3 deletions and IGE. We then set out to determine the relative occurrence of sporadic and familial cases and to examine the likelihood of having seizures for individuals with the microdeletion in familial cases. The 15q13.3 microdeletion was identified in 7 of 539 (1.3%) unrelated cases of IGE using quantitative PCR or SNP arrays and confirmed by array comparative genomic hybridization analysis using probes specific to the 15q13.3 region. The inheritance of this lesion was tracked using family studies. Of the seven microdeletions identified in probands, three were de novo, two were transmitted from an unaffected parent and in two cases the parents were unavailable. Non-penetrance of the microdeletion was identified in 4/7 pedigrees and three pedigrees included other family members with IGE who lacked the 15q13.3 deletion. The odds ratio is 68 (95% confidence interval 29–181), indicating a pathogenic lesion predisposing to epilepsy with complex inheritance and incomplete penetrance for the IGE component of the phenotype in multiplex families.
PMCID: PMC3465696  PMID: 19592580
8.  In vivo evidence for the involvement of the carboxy terminal domain in assembling connexin 36 at the electrical synapse 
Connexin 36 (Cx36)-containing electrical synapses contribute to the timing and amplitude of neural responses in many brain regions. A Cx36-EGFP transgenic was previously generated to facilitate their identification and study. In this study we demonstrate that electrical coupling is normal in transgenic mice expressing Cx36 from the genomic locus and suggest that fluorescent puncta present in brain tissue represent distributed electrical synapses. These qualities emphasize the usefulness of the Cx36-EGFP reporter as a tool for the detailed anatomical characterization of electrical synapses in fixed and living tissue. However, though the fusion protein is able to form gap junctions between Xenopus laevis oocytes it is unable to restore electrical coupling to interneurons in the Cx36-deficient mouse. Further experiments in transgenic tissue and non-neural cell lines reveal impaired transport to the plasma membrane as the possible cause. By analyzing the functional deficits exhibited by the fusion protein in vivo and in vitro, we identify a motif within Cx36 that may interact with other trafficking or scaffold proteins and thereby be responsible for its incorporation into electrical synapses.
PMCID: PMC3025355  PMID: 20510366
Connexin 36; Electrical synapse; Gap junction; Assembly; Transgenic; Intercellular channel; ZO-1
9.  CNVineta: a data mining tool for large case–control copy number variation datasets 
Bioinformatics  2010;26(17):2208-2209.
Motivation: Copy number variation (CNV), a major contributor to human genetic variation, comprises ≥ 1 kb genomic deletions and insertions. Yet, the identification of CNVs from microarray data is still hampered by high false negative and positive prediction rates due to the noisy nature of the raw data. Here, we present CNVineta, an R package for rapid data mining and visualization of CNVs in large case–control datasets genotyped with single nucleotide polymorphism oligonucleotide arrays. CNVineta is compatible with various established CNV prediction algorithms, can be used for genome-wide association analysis of rare and common CNVs and enables rapid and serial display of log2 of raw data ratios as well as B-allele frequencies for visual quality inspection. In summary, CNVineta aides in the interpretation of large-scale CNV datasets and prioritization of target regions for follow-up experiments.
Availability and Implementation: CNVineta is available as an R package and can be downloaded from; the package contains a tutorial outlining a typical workflow. The CNVineta compatible HapMap dataset can also be downloaded from the link above.
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC2922892  PMID: 20605930
10.  Genome-Wide Copy Number Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal Epilepsies 
PLoS Genetics  2010;6(5):e1000962.
Epilepsy is one of the most common neurological disorders in humans with a prevalence of 1% and a lifetime incidence of 3%. Several genes have been identified in rare autosomal dominant and severe sporadic forms of epilepsy, but the genetic cause is unknown in the vast majority of cases. Copy number variants (CNVs) are known to play an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID), autism, and schizophrenia. Genome-wide studies of copy number variation in epilepsy have not been performed. We have applied whole-genome oligonucleotide array comparative genomic hybridization to a cohort of 517 individuals with various idiopathic, non-lesional epilepsies. We detected one or more rare genic CNVs in 8.9% of affected individuals that are not present in 2,493 controls; five individuals had two rare CNVs. We identified CNVs in genes previously implicated in other neurodevelopmental disorders, including two deletions in AUTS2 and one deletion in CNTNAP2. Therefore, our findings indicate that rare CNVs are likely to contribute to a broad range of generalized and focal epilepsies. In addition, we find that 2.9% of patients carry deletions at 15q11.2, 15q13.3, or 16p13.11, genomic hotspots previously associated with ID, autism, or schizophrenia. In summary, our findings suggest common etiological factors for seemingly diverse diseases such as ID, autism, schizophrenia, and epilepsy.
Author Summary
Epilepsy, a common neurological disorder characterized by recurrent seizures, affects up to 3% of the population. In some cases, the epilepsy has a clear cause such as an abnormality in the brain or a head injury. However, in many cases there is no obvious cause. Numerous studies have shown that genetic factors are important in these types of epilepsy, but although several epilepsy genes are known, we can still only identify the genetic cause in a very small fraction of cases. In order to identify new genes that contribute to the genetic causes of epilepsy, we searched the human genome for deletions (missing copies) and duplications (extra copies) of genes in ∼500 patients with epilepsy that are not found in control individuals. Using this approach, we identified several large deletions that are important in at least 3% of epilepsy cases. Furthermore, we found new candidate genes, some of which are also thought to play a role in other related disorders such as autism and intellectual disability. These genes are candidates for further studies in patients with epilepsy.
PMCID: PMC2873910  PMID: 20502679
11.  Absence seizures with intellectual disability as a phenotype of the 15q13.3 microdeletion syndrome 
Epilepsia  2011;52(12):e194-e198.
15q13.3 microdeletions are the most common genetic findings identified in idiopathic generalized epilepsies to date, and they are present in up to 1% of patients. In addition, 15q13.3 microdeletions have been described in patients with epilepsy as part of a complex neurodevelopmental phenotype. We analyzed a cohort of 570 patients with various pediatric epilepsies for 15q13.3 microdeletions. Screening was performed using quantitative polymerase chain reaction; deletions were confirmed by array comparative genomic hybridization (CGH). We carried out detailed phenotyping of deletion carriers. In total, we identified four pediatric patients with 15q13.3 microdeletions, including one previously described patient. Two of four deletions were de novo, one deletion was inherited from an unaffected parent, and for one patient the inheritance is unknown. All four patients had absence epilepsy with various degrees of intellectual disability. We suggest that absence epilepsy accompanied by intellectual disability may represent a common phenotype of the 15q13.3 microdeletion in pediatric patients with epilepsy.
PMCID: PMC3270691  PMID: 22050399
Intellectual disability; Idiopathic generalized epilepsy

Results 1-11 (11)