PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Bacteria activate sensory neurons that modulate pain and inflammation 
Nature  2013;501(7465):52-57.
Summary
Nociceptor sensory neurons are specialized to detect potentially damaging stimuli, protecting the organism by initiating the sensation of pain and eliciting defensive behaviors. Bacterial infections produce pain by unknown molecular mechanisms, although they are presumed secondary to immune activation. Here we demonstrate that bacteria directly activate nociceptors, and that the immune response mediated through TLR2, MyD88, T cells, B cells, and neutrophils/monocytes is not necessary for Staphylococcus aureus induced pain in mice. Mechanical and thermal hyperalgesia parallels live bacterial load rather than tissue swelling or immune activation. Bacteria induce calcium flux and action potentials in nociceptor neurons, in part via bacterial N-formylated peptides and the pore-forming toxin alpha-hemolysin through distinct mechanisms. Specific ablation of Nav1.8-lineage neurons, which include nociceptors, abrogated pain during bacterial infection, but concurrently increased local immune infiltration and lymphadenopathy of the draining lymph node. Thus, bacterial pathogens produce pain by directly activating sensory neurons that modulate inflammation, an unsuspected role for the nervous system in host-pathogen interactions.
doi:10.1038/nature12479
PMCID: PMC3773968  PMID: 23965627
2.  Phenotyping the Function of TRPV1-Expressing Sensory Neurons by Targeted Axonal Silencing 
Specific somatosensations may be processed by different subsets of primary afferents. C-fibers expressing heat-sensitive TRPV1 channels are proposed, for example, to be heat but not mechanical pain detectors. To phenotype in rats the sensory function of TRPV1+ afferents, we rapidly and selectively silenced only their activity, by introducing the membrane-impermeant sodium channel blocker QX-314 into these axons via the TRPV1 channel pore. Using tandem mass spectrometry we show that upon activation with capsaicin, QX-314 selectively accumulates in the cytosol only of TRPV1-expressing cells, and not in control cells. Exposure to QX-314 and capsaicin induces in small DRG neurons a robust sodium current block within 30 s. In sciatic nerves, application of extracellular QX-314 with capsaicin persistently reduces C-fiber but not A-fiber compound action potentials and this effect does not occur in TRPV1−/− mice. Behavioral phenotyping after selectively silencing TRPV1+ sciatic nerve axons by perineural injections of QX-314 and capsaicin reveals deficits in heat and mechanical pressure but not pinprick or light touch perception. The response to intraplantar capsaicin is substantially reduced, as expected. During inflammation, silencing TRPV1+ axons abolishes heat, mechanical, and cold hyperalgesia but tactile and cold allodynia remain following peripheral nerve injury. These results indicate that TRPV1-expressing sensory neurons process particular thermal and mechanical somatosensations, and that the sensory channels activated by mechanical and cold stimuli to produce pain in naive/inflamed rats differ from those in animals after peripheral nerve injury.
doi:10.1523/JNEUROSCI.2804-12.2013
PMCID: PMC3640269  PMID: 23283344
3.  5,6-EET Is Released upon Neuronal Activity and Induces Mechanical Pain Hypersensitivity via TRPA1 on Central Afferent Terminals 
The Journal of Neuroscience  2012;32(18):6364-6372.
Epoxyeicosatrienoic acids (EETs) are cytochrome P450-epoxygenase-derived metabolites of arachidonic acid that act as endogenous signaling molecules in multiple biological systems. Here we have investigated the specific contribution of 5,6-EET to transient receptor potential (TRP) channel activation in nociceptor neurons and its consequence for nociceptive processing. We found that, during capsaicin-induced nociception, 5,6-EET levels increased in dorsal root ganglia (DRGs) and the dorsal spinal cord, and 5,6-EET is released from activated sensory neurons in vitro. 5,6-EET potently induced a calcium flux (100 nm) in cultured DRG neurons that was completely abolished when TRPA1 was deleted or inhibited. In spinal cord slices, 5,6-EET dose dependently enhanced the frequency, but not the amplitude, of spontaneous EPSCs (sEPSCs) in lamina II neurons that also responded to mustard oil (allyl isothiocyanate), indicating a presynaptic action. Furthermore, 5,6-EET-induced enhancement of sEPSC frequency was abolished in TRPA1-null mice, suggesting that 5,6-EET presynaptically facilitated spinal cord synaptic transmission by TRPA1. Finally, in vivo intrathecal injection of 5,6-EET caused mechanical allodynia in wild-type but not TRPA1-null mice. We conclude that 5,6-EET is synthesized on the acute activation of nociceptors and can produce mechanical hypersensitivity via TRPA1 at central afferent terminals in the spinal cord.
doi:10.1523/JNEUROSCI.5793-11.2012
PMCID: PMC3359875  PMID: 22553041
4.  Inflammation-induced decrease in voluntary wheel running in mice: a non-reflexive test for evaluating inflammatory pain and analgesia 
Pain  2012;153(4):876-884.
Inflammatory pain impacts adversely on the quality of life of patients, often resulting in motor disabilities. Therefore, we studied the effect of peripheral inflammation induced by intraplantar administration of complete Freund’s adjuvant (CFA) in mice on a particular form of voluntary locomotion, wheel running, as an index of mobility impairment produced by pain. The distance travelled over 1 h of free access to activity wheels decreased significantly in response to hindpaw inflammation, peaking 24 h after CFA administration. Recovery of voluntary wheel running by day three correlated with the ability to support weight on the inflamed limb. Inflammation-induced mechanical hypersensitivity, measured with von Frey hairs, lasted considerably longer than the impaired voluntary wheel running and is not driving, therefore, the change in voluntary behavior. The CFA-induced decrease in voluntary wheel running was dose-dependently reversed by subcutaneous (s.c.) administration of anti-inflammatory and analgesic drugs, including naproxen (10–80 mg/kg), ibuprofen (2.5–20 mg/kg), diclofenac (1.25–10 mg/kg), celecoxib (2.5–20 mg/kg), prednisolone (0.62–5 mg/kg) and morphine (0.06–0.5 mg/kg), all at much lower doses than reported in most rodent models. Furthermore, the doses that induced recovery in voluntary wheel running did not reduce CFA-induced mechanical allodynia, indicating a greater sensitivity of the former as a surrogate measure of inflammatory pain. We conclude that monitoring changes in voluntary wheel running in mice during peripheral inflammation is a simple, observer-independent objective measure of functional changes produced by inflammation, likely more aligned to the global level of pain than reflexive measures, and much more sensitive to analgesic drug effects.
doi:10.1016/j.pain.2012.01.016
PMCID: PMC3319437  PMID: 22341563
5.  Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice 
The Journal of Clinical Investigation  2011;121(11):4332-4347.
Although peripheral nerves can regenerate after injury, proximal nerve injury in humans results in minimal restoration of motor function. One possible explanation for this is that injury-induced axonal growth is too slow. Heat shock protein 27 (Hsp27) is a regeneration-associated protein that accelerates axonal growth in vitro. Here, we have shown that it can also do this in mice after peripheral nerve injury. While rapid motor and sensory recovery occurred in mice after a sciatic nerve crush injury, there was little return of motor function after sciatic nerve transection, because of the delay in motor axons reaching their target. This was not due to a failure of axonal growth, because injured motor axons eventually fully re-extended into muscles and sensory function returned; rather, it resulted from a lack of motor end plate reinnervation. Tg mice expressing high levels of Hsp27 demonstrated enhanced restoration of motor function after nerve transection/resuture by enabling motor synapse reinnervation, but only within 5 weeks of injury. In humans with peripheral nerve injuries, shorter wait times to decompression surgery led to improved functional recovery, and, while a return of sensation occurred in all patients, motor recovery was limited. Thus, absence of motor recovery after nerve damage may result from a failure of synapse reformation after prolonged denervation rather than a failure of axonal growth.
doi:10.1172/JCI58675
PMCID: PMC3223863  PMID: 21965333
6.  Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury 
Brain  2009;133(1):126-138.
Secretory leukocyte protease inhibitor is a serine protease inhibitor produced by various cell types, including neutrophils and activated macrophages, and has anti-inflammatory properties. It has been shown to promote wound healing in the skin and other non-neural tissues, however, its role in central nervous system injury was not known. We now report a beneficial role for secretory leukocyte protease inhibitor after spinal cord injury. After spinal cord contusion injury in mice, secretory leukocyte protease inhibitor is expressed primarily by astrocytes and neutrophils but not macrophages. We show, using transgenic mice over-expressing secretory leukocyte protease inhibitor, that this molecule has an early protective effect after spinal cord contusion injury. Furthermore, wild-type mice treated for the first week after spinal cord contusion injury with recombinant secretory leukocyte protease inhibitor exhibit sustained improvement in locomotor control and reduced secondary tissue damage. Recombinant secretory leukocyte protease inhibitor injected intraperitoneally localizes to the nucleus of circulating leukocytes, is detected in the injured spinal cord, reduces activation of nuclear factor-κB and expression of tumour necrosis factor-α. Administration of recombinant secretory leukocyte protease inhibitor might therefore be useful for the treatment of acute spinal cord injury.
doi:10.1093/brain/awp304
PMCID: PMC2801328  PMID: 20047904
spinal cord injury; neuroinflammation; wound healing; neutrophil; astrocytes; macrophage

Results 1-6 (6)