PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (66)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Multimorbidity and Risk of Mild Cognitive Impairment. 
OBJECTIVES
To determine the association of multiple chronic conditions with risk of incident mild cognitive impairment (MCI)/dementia.
DESIGN
Prospective cohort study
SETTING
Olmsted County, Minnesota.
PARTICIPANTS
Cognitively normal individuals (N=2,176) enrolled in the Mayo Clinic Study of Aging (MCSA).
MEASUREMENTS
Participants were randomly selected from the community and evaluated by a study coordinator, a physician, and underwent neuropsychometric testing at baseline and at 15-month intervals to assess diagnoses of MCI and dementia. We electronically captured information on International Classification of Diseases, ninth revision (ICD-9) codes for chronic conditions in the five years prior to enrollment using the Rochester Epidemiology Project medical records linkage system. We defined multimorbidity as having two or more chronic conditions and examined the association of multimorbidity with MCI/dementia using Cox proportional hazards models.
RESULTS
Among 2,176 cognitively normal participants (mean [±SD] age 78.5 [±5.2] years; 50.6% men), 1,884 (86.6%) had multimorbidity. The risk of MCI/dementia was elevated in persons with multimorbidity (hazard ratio [HR]: 1.38; 95% confidence interval [CI], 1.05–1.82). The HR was stronger in persons with ≥4 conditions (HR: 1.61; 95%CI, 1.21–2.13) compared to persons with only 0 or 1 conditions, and for men (HR: 1.53, 95% CI, 1.01– 2.31) than for women (HR: 1.20, 95% CI, 0.83– 1.74).
CONCLUSION
In older adults, having multiple chronic conditions is associated with an increased risk of MCI/dementia. This is consistent with the hypothesis that multiple etiologies may contribute to MCI and late-life dementia. Preventing chronic diseases may be beneficial in delaying or preventing MCI or dementia.
doi:10.1111/jgs.13612
PMCID: PMC4607039  PMID: 26311270
mild cognitive impairment; dementia; multimorbidity
2.  Mild Neurocognitive Disorder: An Old Wine in a New Bottle 
Harvard Review of Psychiatry  2015;23(5):368-376.
Abstract
The American Psychiatric Association has recently published the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). The DSM-IV category “Dementia, Delirium, Amnestic, and Other Cognitive Disorders” has undergone extensive revision. DSM-5 has renamed this category as “Neurocognitive Disorders” (NCD), which now covers three entities: delirium, major NCD, and mild NCD. The DSM-IV version of mild NCD resembles the DSM-5 version in name only. DSM-IV defined mild NCD based on a single criterion, whereas DSM-5 defines mild NCD by using several cognitive and related criteria. The main difference between mild NCD and the Key International Symposium criteria of mild cognitive impairment (MCI) is that the research work that led to the construct of MCI primarily involved elderly study participants (even though age was not part of the definition of MCI), whereas mild NCD includes acquired cognitive disorders of all age groups. DSM-5 essentially discusses the epidemiology and diagnostic markers of mild NCD by drawing congruence between MCI and mild NCD. The DSM-5 definition of mild NCD is anchored on four criteria and two specifiers. The four criteria refer to cognitive changes, functional activities, and exclusion of delirium and competing mental disorders. The two specifiers are the presumed etiologies of mild NCD and the presence or absence of behavioral problems. While the category “mild NCD” may improve reliability of diagnoses, it has yet to withstand scientific scrutiny to be considered a valid construct. This article reviews the DSM-5 criteria for mild NCD, compares them with the Key International Symposium MCI criteria, and discusses the pros and cons of the mild NCD construct.
doi:10.1097/HRP.0000000000000084
PMCID: PMC4894762  PMID: 26332219
cognitive disorders; dementia; DSM-5; mild cognitive impairment; mild neurocognitive disorder
3.  White matter integrity in dementia with Lewy bodies: A Voxel-Based Analysis of Diffusion Tensor Imaging 
Neurobiology of aging  2015;36(6):2010-2017.
Many patients with dementia with Lewy bodies have overlapping Alzheimer's disease (AD)–related pathology, which may contribute to white matter (WM) diffusivity alterations on diffusion tensor imaging (DTI). Consecutive patients with DLB (n=30), age and sex matched AD patients (n=30), and cognitively normal controls (CN; n=60) were recruited. All subjects underwent DTI, 18F 2-fluoro-deoxy-d-glucose (FDG) and 11C Pittsburgh compound B (PiB) PET scans. DLB patients had reduced fractional anisotropy (FA) in the parieto-occipital WM but not elsewhere compared to CN, and elevated FA in parahippocampal WM compared to AD patients, which persisted after controlling for Aβ load in DLB. The pattern of WM FA alterations on DTI was consistent with the more diffuse posterior parietal and occipital glucose hypometabolism of FDG PET in the cortex. DLB is characterized by a loss of parieto-occipital WM integrity, independent of concomitant AD-related Aβ load. Cortical glucose hypometabolism accompanies WM FA alterations with a concordant pattern of gray and white matter involvement in the parieto-occipital lobes in DLB.
doi:10.1016/j.neurobiolaging.2015.03.007
PMCID: PMC4433563  PMID: 25863527
dementia with Lewy bodies; diffusion tensor imaging; white matter integrity; amyloid-beta load; voxel-based analysis; cortical hypometabolism
4.  Risk and protective factors for cognitive impairment in persons aged 85 years and older 
Neurology  2015;84(18):1854-1861.
Objective:
To determine risk and protective factors for mild cognitive impairment (MCI) among persons 85 years and older.
Methods:
Participants in the population-based prospective Mayo Clinic Study of Aging were comprehensively evaluated at baseline and at 15 monthly intervals to determine incident MCI. At baseline, lifestyle factors in midlife and late life were assessed by self-reported questionnaire; vascular and comorbid conditions were abstracted from participants' medical records.
Results:
Of 256 participants who were cognitively normal at enrollment (median age 87.3 years, 62% women), 121 developed MCI at a median 4.1 years of follow-up. Predictors of MCI were APOE ε4 allele (hazard ratio [HR] 1.89; p = 0.008), current depressive symptoms (HR 1.78; p = 0.02), midlife onset of hypertension (HR 2.43; p = 0.005), increasing number of vascular diseases (HR 1.13; p = 0.02), and chronic conditions from the Charlson Comorbidity Index (HR 1.08; p = 0.006). Models were adjusted for sex and education, with age as the time variable. The risk of MCI was reduced for participants who reported engagement in artistic (HR 0.27; p = 0.03), craft (HR 0.55; p = 0.02), and social (HR 0.45; p = 0.005) activities in both midlife and late life, and in the use of a computer in late life (HR 0.47; p = 0.008).
Conclusions:
Chronic disease burden increases risk of MCI, whereas certain lifestyle factors reduce risk in persons 85 years and older. This implies that preventive strategies for MCI may need to begin in midlife and should persist throughout late life.
doi:10.1212/WNL.0000000000001537
PMCID: PMC4433468  PMID: 25854867
5.  Predicting the risk of mild cognitive impairment in the Mayo Clinic Study of Aging 
Neurology  2015;84(14):1433-1442.
Objective:
We sought to develop risk scores for the progression from cognitively normal (CN) to mild cognitive impairment (MCI).
Methods:
We recruited into a longitudinal cohort study a randomly selected, population-based sample of Olmsted County, MN, residents, aged 70 to 89 years on October 1, 2004. At baseline and subsequent visits, participants were evaluated for demographic, clinical, and neuropsychological measures, and were classified as CN, MCI, or dementia. Using baseline demographic and clinical variables in proportional hazards models, we derived scores that predicted the risk of progressing from CN to MCI. We evaluated the ability of these risk scores to classify participants for MCI risk.
Results:
Of 1,449 CN participants, 401 (27.7%) developed MCI. A basic model had a C statistic of 0.60 (0.58 for women, 0.62 for men); an augmented model resulted in a C statistic of 0.70 (0.69 for women, 0.71 for men). Both men and women in the highest vs lowest sex-specific quartiles of the augmented model's risk scores had an approximately 7-fold higher risk of developing MCI. Adding APOE ε4 carrier status improved the model (p = 0.002).
Conclusions:
We have developed MCI risk scores using variables easily assessable in the clinical setting and that may be useful in routine patient care. Because of variability among populations, validation in independent samples is required. These models may be useful in identifying patients who might benefit from more expensive or invasive diagnostic testing, and can inform clinical trial design. Inclusion of biomarkers or other risk factors may further enhance the models.
doi:10.1212/WNL.0000000000001437
PMCID: PMC4395890  PMID: 25788555
6.  Effect of intellectual enrichment on AD biomarker trajectories 
Neurology  2016;86(12):1128-1135.
Objective:
To investigate the effect of age, sex, APOE4 genotype, and lifestyle enrichment (education/occupation, midlife cognitive activity, and midlife physical activity) on Alzheimer disease (AD) biomarker trajectories using longitudinal imaging data (brain β-amyloid load via Pittsburgh compound B PET and neurodegeneration via 18fluorodeoxyglucose (FDG) PET and structural MRI) in an elderly population without dementia.
Methods:
In the population-based longitudinal Mayo Clinic Study of Aging, we studied 393 participants without dementia (340 clinically normal, 53 mild cognitive impairment; 70 years and older) who had cognitive and physical activity measures and at least 2 visits with imaging biomarkers. We dichotomized participants into high (≥14 years) and low (<14 years) education levels using the median. For the entire cohort and the 2 education strata, we built linear mixed models to investigate the effect of the predictors on each of the biomarker outcomes.
Results:
Age was associated with amyloid and neurodegeneration trajectories; APOE4 status appears to influence only the amyloid and FDG trajectories but not hippocampal volume trajectory. In the high-education stratum, high midlife cognitive activity was associated with lower amyloid deposition in APOE4 carriers. APOE4 status was associated with lower FDG uptake in the entire cohort and in participants with lower education but not the high-education cohort.
Conclusions:
There were minimal effects of lifestyle enrichment on AD biomarker trajectories (specifically rates). Lifetime intellectual enrichment (high education, high midlife cognitive activity) is associated with lower amyloid in APOE4 carriers. High education is protective from the APOE4 effect on FDG metabolism. Differing education levels may explain the conflicting results seen in the literature.
doi:10.1212/WNL.0000000000002490
PMCID: PMC4820132  PMID: 26911640
7.  Sex-Based Memory Advantages and Cognitive Aging: A Challenge to the Cognitive Reserve Construct? 
Education and related proxies for cognitive reserve (CR) are confounded by associations with environmental factors that correlate with cerebrovascular disease possibly explaining discrepancies between studies examining their relationships to cognitive aging and dementia. In contrast, sex-related memory differences may be a better proxy. Since they arise developmentally, they are less likely to reflect environmental confounds. Women outperform men on verbal and men generally outperform women on visuospatial memory tasks. Furthermore, memory declines during the preclinical stage of AD, when it is clinically indistinguishable from normal aging. To determine whether CR mitigates age-related memory decline, we examined the effects of gender and APOE genotype on longitudinal memory performances. Memory decline was assessed in a cohort of healthy men and women enriched for APOE ε4 who completed two verbal [Rey Auditory Verbal Learning Test (AVLT), Buschke Selective Reminding Test (SRT)] and two visuospatial [Rey-Osterrieth Complex Figure Test (CFT), and Benton Visual Retention Test (VRT)] memory tests, as well as in a separate larger and older cohort [National Alzheimer’s Coordinating Center (NACC)] who completed a verbal memory test (Logical Memory). Age-related memory decline was accelerated in APOE ε4 carriers on all verbal memory measures (AVLT, p = .03; SRT p<.001; logical memory p<.001) and on the VRT p = .006. Baseline sex associated differences were retained over time, but no sex differences in rate of decline were found for any measure in either cohort. Sex-based memory advantage does not mitigate age-related memory decline in either APOE ε4 carriers or non-carriers.
doi:10.1017/S1355617715000016
PMCID: PMC4785799  PMID: 25665170
Aging; Preclinical Alzheimer’s disease; Mild cognitive impairment; Memory; Sex and cognition; APOE
8.  Neuropsychiatric symptoms, APOE ε4, and the risk of incident dementia 
Neurology  2015;84(9):935-943.
Objective:
To investigate the population-based interaction between a biological variable (APOE ε4), neuropsychiatric symptoms, and the risk of incident dementia among subjects with prevalent mild cognitive impairment (MCI).
Methods:
We prospectively followed 332 participants with prevalent MCI (aged 70 years and older) enrolled in the Mayo Clinic Study of Aging for a median of 3 years. The diagnoses of MCI and dementia were made by an expert consensus panel based on published criteria, after reviewing neurologic, cognitive, and other pertinent data. Neuropsychiatric symptoms were determined at baseline using the Neuropsychiatric Inventory Questionnaire. We used Cox proportional hazards models, with age as a time scale, to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). Models were adjusted for sex, education, and medical comorbidity.
Results:
Baseline agitation, nighttime behaviors, depression, and apathy significantly increased the risk of incident dementia. We observed additive interactions between APOE ε4 and depression (joint effect HR = 2.21; 95% CI = 1.24–3.91; test for additive interaction, p < 0.001); and between APOE ε4 and apathy (joint effect HR = 1.93; 95% CI = 0.93–3.98; test for additive interaction, p = 0.031). Anxiety, irritability, and appetite/eating were not associated with increased risk of incident dementia.
Conclusions:
Among prevalent MCI cases, baseline agitation, nighttime behaviors, depression, and apathy elevated the risk of incident dementia. There was a synergistic interaction between depression or apathy and APOE ε4 in further elevating the risk of incident dementia.
doi:10.1212/WNL.0000000000001307
PMCID: PMC4351664  PMID: 25653291
9.  Neuropsychiatric symptoms as early manifestations of emergent dementia: Provisional diagnostic criteria for mild behavioral impairment 
Neuropsychiatric symptoms (NPS) are common in dementia and in predementia syndromes such as mild cognitive impairment (MCI). NPS in MCI confer a greater risk for conversion to dementia in comparison to MCI patients without NPS. NPS in older adults with normal cognition also confers a greater risk of cognitive decline in comparison to older adults without NPS. Mild behavioral impairment (MBI) has been proposed as a diagnostic construct aimed to identify patients with an increased risk of developing dementia, but who may or may not have cognitive symptoms. We propose criteria that include MCI in the MBI framework, in contrast to prior definitions of MBI. Although MBI and MCI can co-occur, we suggest that they are different and that both portend a higher risk of dementia. These MBI criteria extend the previous literature in this area and will serve as a template for validation of the MBI construct from epidemiologic, neurobiological, treatment, and prevention perspectives.
doi:10.1016/j.jalz.2015.05.017
PMCID: PMC4684483  PMID: 26096665
Dementia; FTD; Alzheimer’s disease; MCI; MBI; Neuropsychiatric symptoms of dementia; NPS; Behavior; Behaviour; Agitation; Psychosis; Disinhibition; Apathy; Depression; BPSD
10.  Pattern of Brain Atrophy Rates in Autopsy-Confirmed Dementia with Lewy Bodies 
Neurobiology of aging  2014;36(1):452-461.
Dementia with Lewy bodies (DLB) is characterized by preserved whole brain and medial temporal lobe volumes compared to Alzheimer’s disease dementia (AD) on MRI. However, frequently coexistent AD-type pathology may influence the pattern of regional brain atrophy rates in DLB patients. We investigated the pattern and magnitude of the atrophy rates from two serial MRIs in autopsy-confirmed DLB (n=20) and mixed DLB/AD patients (n=22), compared to AD (n=30) and elderly non-demented controls (n=15), followed antemortem. DLB patients without significant AD-type pathology were characterized by lower global and regional rates of atrophy, similar to controls. The mixed DLB/AD patients displayed greater rates in the whole brain, temporo-parietal cortices, hippocampus and amygdala, and ventricle expansion, similar to AD patients. In the DLB and DLB/AD patients, the atrophy rates correlated with Braak neurofibrillary tangle stage, cognitive decline and progression of motor symptoms. Global and regional atrophy rates are associated with AD-type pathology in DLB, and can be used as biomarkers of AD progression in patients with LB pathology.
doi:10.1016/j.neurobiolaging.2014.07.005
PMCID: PMC4268128  PMID: 25128280
autopsy-confirmed dementia with Lewy bodies; Alzheimer’s disease; serial MRI; atrophy rate; Braak neurofibrillary tangle stage; sample size estimate
11.  APOE ε4 Genotype and the Risk of Subjective Cognitive Impairment in Elderly Persons 
We compared the risk of subjective cognitive impairment (SCI) between cases (APOE ε4 carriers) and controls (APOE ε4 non-carriers. SCI was assessed by a validated self-reported questionnaire. We used multi variable logistic regression analyses to compute odds ratios (95% confidence intervals) adjusted for age, sex, education, and marital status. Data were available on 114 participants (83 women; 47 APOE ε4 carriers; mean age 69 years). The risk of SCI was significantly higher among cases than controls, particularly for those aged 70 years and older. Our findings should be considered preliminary until confirmed by a prospective cohort study.
doi:10.1176/appi.neuropsych.14100268
PMCID: PMC4581892  PMID: 25803305
subjective cognitive impairment; APOE ε4; mild cognitive impairment; dementia
12.  Incidence of Dementia Among Participants and Nonparticipants in a Longitudinal Study of Cognitive Aging 
American Journal of Epidemiology  2014;180(4):414-423.
Although rates of incident dementia have been reported from several populations, the impact of nonparticipation on dementia incidence in studies of cognitive aging is unknown. In 2004, investigators with the Mayo Clinic Study of Aging selected persons aged 70–89 years from an enumeration of all Olmsted County, Minnesota, residents (age- and sex-stratified random sample). Of 4,398 potential participants, 2,050 agreed to undergo an in-person health assessment. Those participants were reevaluated in person using standard diagnostic procedures approximately every 15 months over a median follow-up period of 5.7 years (through September 15, 2013). There were 1,679 persons who refused any participation. A trained nurse abstractor reviewed the medical records of nonparticipants using the Rochester Epidemiology Project's medical record linkage system a median of 3.9 years after refusal. Nonparticipants had a higher prevalence of dementia than participants evaluated in person (6.5% vs. 3.3%; P < 0.0001). The standardized incidence of dementia was not significantly higher among the nonparticipants (23.2 per 1,000 person-years) than in those evaluated in person (19.6 per 1,000 person-years; hazard ratio = 1.17, 95% confidence interval: 0.95, 1.43 (P = 0.13); adjusted for education and sex, with age as the time scale). The small, nonsignificant impact of nonparticipation on rates of incident dementia is reassuring for future studies based on incident dementia cases.
doi:10.1093/aje/kwu103
PMCID: PMC4128768  PMID: 24859276
aging; cognition; cognitive aging; dementia; epidemiologic methods; incidence; prevalence
13.  Baseline Neuropsychiatric Symptoms and the Risk of Incident Mild Cognitive Impairment: A Population-Based Study 
The American journal of psychiatry  2014;171(5):572-581.
Objective
We conducted a prospective cohort study to estimate the incidence of mild cognitive impairment (MCI) by baseline neuropsychiatric status, in the setting of the Mayo Clinic Study of Aging.
Method
A classification of normal cognitive aging, MCI, and dementia was adjudicated by an expert consensus panel based on published criteria. Hazard ratios (HR) and 95% confidence intervals (95% CI) were computed using Cox proportional hazards model, with age as a time scale. Baseline Neuropsychiatric Inventory Questionnaire data were available on 1,587 cognitively normal persons who underwent at least one follow-up visit.
Results
We followed the cohort (N=1,587) to incident MCI (N=365) or censoring variables (N=179) for a median of 5 years. The following baseline neuropsychiatric symptoms significantly predicted incident MCI, after adjusting for age, sex, education and medical comorbidity: agitation (HR=3.06; 95% CI=1.89–4.93), apathy (HR=2.26; 95% CI=1.49–3.41), anxiety (HR=1.87; 95% CI=1.28–2.73), irritability (HR=1.84; 95% CI=1.31–2.58), and depression (HR=1.63; 95% CI=1.23–2.16). Delusion (HR=0.55; 95% CI=0.08–3.95) and hallucination (HR=1.48; 95% CI=0.37–5.99) did not predict incident MCI. A secondary analysis showed that euphoria (HR=11.3; 95% CI=3.44–37.2), disinhibition (HR=5.18; 95% CI=2.24–12.0) and nighttime behavior (HR=2.04; 95% CI=1.11–3.76) were significant predictors of non-amnestic MCI but not of amnestic MCI. By contrast, depression predicted amnestic MCI (HR=1.74; 95% CI=1.22–2.47) but not non-amnestic MCI (HR=1.18; 95% CI=0.64–2.16).
Conclusions
Non-psychotic symptoms predicted incident MCI. However, the associations between baseline euphoria, disinhibition, delusions, hallucinations, and the outcome of incident MCI should be considered preliminary since the observations were based on small number of events.
doi:10.1176/appi.ajp.2014.13060821
PMCID: PMC4057095  PMID: 24700290
14.  Mortality in mild cognitive impairment varies by subtype, sex and lifestyle factors. The Mayo Clinic Study of Aging 
Journal of Alzheimer's disease : JAD  2015;45(4):1237-1245.
Background
Etiologic differences in mild cognitive impairment (MCI) subtypes may impact mortality.
Objective
To assess the rate of death in MCI overall, and by subtype, in the population-based Mayo Clinic Study of Aging.
Methods
Participants aged 70–89 years at enrollment were clinically evaluated at baseline and 15-month intervals to assess diagnoses of MCI and dementia. Mortality in MCI cases vs. cognitively normal (CN) individuals was estimated using Cox proportional hazards models.
Results
Over a median follow-up of 5.8 years, 331 of 862 (38.4%) MCI cases and 224 of 1292 (17.3%) cognitively normal participants died. Compared to CN individuals, mortality was elevated in persons with MCI (hazard ratio [HR] = 2.03; 95% CI: 1.61 to 2.55), and was higher for non-amnestic MCI (naMCI; HR = 2.47; 95% CI: 1.80 to 3.39) than for amnestic MCI (aMCI; HR = 1.89; 95% CI: 1.48 to 2.41) after adjusting for confounders. Mortality varied significantly by sex, education, history of heart disease, and engaging in moderate physical exercise (p for interaction <0.05 for all). Mortality rate estimates were highest in MCI cases who were men, did not exercise, had heart disease, and had higher education vs. CN without these factors, and for naMCI cases vs. aMCI cases without these factors.
Conclusions
These findings suggest stronger impact of etiologic factors on naMCI mortality. Prevention of heart disease, exercise vigilance, may reduce MCI mortality. Delayed MCI diagnosis in persons with higher education impacts mortality, and higher mortality in men may explain similar dementia incidence by sex in our cohort.
doi:10.3233/JAD-143078
PMCID: PMC4398642  PMID: 25697699
Mild cognitive impairment; mortality; cohort studies; incidence studies; prognosis; outcomes research
15.  Association of type 2 diabetes with brain atrophy and cognitive impairment 
Neurology  2014;82(13):1132-1141.
Objective:
We investigated the associations of diabetes and hypertension with imaging biomarkers (markers of neuronal injury and ischemic damage) and with cognition in a population-based cohort without dementia.
Methods:
Participants (n = 1,437, median age 80 years) were evaluated by a nurse and physician and underwent neuropsychological testing. A diagnosis of cognitively normal, mild cognitive impairment (MCI), or dementia was made by an expert panel. Participants underwent MRI to determine cortical and subcortical infarctions, white matter hyperintensity (WMH) volume, hippocampal volume (HV), and whole brain volume (WBV). The medical records were reviewed for diabetes and hypertension in midlife or later.
Results:
Midlife diabetes was associated with subcortical infarctions (odds ratio, 1.85 [95% confidence interval, 1.09–3.15]; p = 0.02), reduced HV (−4% [−7 to −1.0]; p = 0.01), reduced WBV (−2.9% [−4.1 to −1.6]), and prevalent MCI (odds ratio, 2.08; p = 0.01). The association between diabetes and MCI persisted with adjustment for infarctions and WMH volume but was attenuated after adjustment for WBV (1.60 [0.87–2.95]; p = 0.13) and HV (1.82 [1.00–3.32]; p = 0.05). Midlife hypertension was associated with infarctions and WMH volume and was marginally associated with reduced performance in executive function. Effects of late-life onset of diabetes and hypertension were few.
Conclusions:
Midlife onset of diabetes may affect late-life cognition through loss of brain volume. Midlife hypertension may affect executive function through ischemic pathology. Late-life onset of these conditions had fewer effects on brain pathology and cognition.
doi:10.1212/WNL.0000000000000269
PMCID: PMC3966799  PMID: 24647028
16.  Hypothyroidism and Risk of Mild Cognitive Impairment in Elderly Persons - A Population Based Study 
JAMA neurology  2014;71(2):201-207.
IMPORTANCE
Association of clinical and subclinical hypothyroidism with mild cognitive impairment (MCI) is not established.
OBJECTIVE
To evaluate the association of clinical and subclinical hypothyroidism with MCI in a large population based cohort.
DESIGN
A cross-sectional, population-based study.
SETTING
Olmsted County, Minnesota.
PARTICIPANTS
Randomly selected participants were aged 70 to 89 years on October 1, 2004, and were without documented prevalent dementia. A total of 2,050 participants were evaluated and underwent in-person interview, neurological evaluation and neuropsychological testing to assess performance in memory, attention/executive function, visuospatial, and language domains. Subjects were diagnosed by consensus as cognitively normal, MCI or dementia according to published criteria. Clinical and subclinical hypothyroidism was ascertained from a medical records-linkage system.
MAIN OUTCOME MEASURES
Association of clinical and subclinical hypothyroidism with MCI.
Results
Among 1904 eligible participants, the frequency of MCI was 16% in 1450 subjects with normal thyroid function, 17% in 313 subjects with clinical hypothyroidism, and 18% in 141 subjects with subclinical hypothyroidism. After adjusting for covariates (age, gender, education, education years, sex, ApoE ε 4, depression, diabetes, hypertension, stroke, BMI and coronary artery disease) we found no significant association between clinical or subclinial hypothyroidism and MCI [OR 0.99 (95% CI 0.66–1.48) and OR 0.88 (95% CI 0.38–2.03) respectively]. No effect of gender interaction was seen on these effects. In stratified analysis, the odds of MCI with clinical and subclinical hypothyroidisn among males was 1.02 (95%CI, 0.57–1.82) and 1.29 (95%CI 0.68–2.44), among females was 1.04 (95% 0.66–1.66) and 0.86 (95% CI 0.37–2.02) respectively.
Conclusion
In this population based cohort of eldery, neither clinical nor subclinical hypothyrpodism was associated with MCI. Our findings need to be validated in a separate settings using the published criteria for MCI and also confirmed in a longitudinal study.
doi:10.1001/jamaneurol.2013.5402
PMCID: PMC4136444  PMID: 24378475
17.  Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal 
Neurology  2014;82(4):317-325.
Objective:
To estimate rates of progression from mild cognitive impairment (MCI) to dementia and of reversion from MCI to being cognitively normal (CN) in a population-based cohort.
Methods:
Participants (n = 534, aged 70 years and older) enrolled in the prospective Mayo Clinic Study of Aging were evaluated at baseline and every 15 months to identify incident MCI or dementia.
Results:
Over a median follow-up of 5.1 years, 153 of 534 participants (28.7%) with prevalent or incident MCI progressed to dementia (71.3 per 1,000 person-years). The cumulative incidence of dementia was 5.4% at 1 year, 16.1% at 2, 23.4% at 3, 31.1% at 4, and 42.5% at 5 years. The risk of dementia was elevated in MCI cases (hazard ratio [HR] 23.2, p < 0.001) compared with CN subjects. Thirty-eight percent (n = 201) of MCI participants reverted to CN (175.0/1,000 person-years), but 65% subsequently developed MCI or dementia; the HR was 6.6 (p < 0.001) compared with CN subjects. The risk of reversion was reduced in subjects with an APOE ε4 allele (HR 0.53, p < 0.001), higher Clinical Dementia Rating Scale–Sum of Boxes (HR 0.56, p < 0.001), and poorer cognitive function (HR 0.56, p < 0.001). The risk was also reduced in subjects with amnestic MCI (HR 0.70, p = 0.02) and multidomain MCI (HR 0.61, p = 0.003).
Conclusions:
MCI cases, including those who revert to CN, have a high risk of progressing to dementia. This suggests that diagnosis of MCI at any time has prognostic value.
doi:10.1212/WNL.0000000000000055
PMCID: PMC3929198  PMID: 24353333
18.  Head trauma and in vivo measures of amyloid and neurodegeneration in a population-based study 
Neurology  2014;82(1):70-76.
Objectives:
We determined whether head trauma was associated with amyloid deposition and neurodegeneration among individuals who were cognitively normal (CN) or had mild cognitive impairment (MCI).
Methods:
Participants included 448 CN individuals and 141 individuals with MCI from the Mayo Clinic Study of Aging who underwent Pittsburgh compound B (PiB)-PET, fluorodeoxyglucose-PET, and MRI. Head trauma was defined as a self-reported brain injury with at least momentary loss of consciousness or memory. Regression models examined whether head trauma was associated with each neuroimaging variable (assessed as continuous and dichotomous measures) in both CN and MCI participants, controlling for age and sex.
Results:
Among 448 CN individuals, 74 (17%) self-reported a head trauma. There was no difference in any neuroimaging measure between CN subjects with and without head trauma. Of 141 participants with MCI, 25 (18%) self-reported a head trauma. MCI participants with a head trauma had higher amyloid levels (by an average 0.36 standardized uptake value ratio units, p = 0.002).
Conclusions:
Among individuals with MCI, but not CN individuals, self-reported head trauma with at least momentary loss of consciousness or memory was associated with greater amyloid deposition, suggesting that head trauma may be associated with Alzheimer disease–related neuropathology. Differences between CN individuals and individuals with MCI raise questions about the relevance of head injury–PET abnormality findings in those with MCI.
doi:10.1212/01.wnl.0000438229.56094.54
PMCID: PMC3873622  PMID: 24371306
19.  Association of diabetes with amnestic and nonamnestic mild cognitive impairment 
Background
Type 2 diabetes may increase the risk of amnestic mild cognitive impairment (aMCI) through Alzheimer's disease (AD)-related and vascular pathology and may also increase the risk of nonamnestic MCI (naMCI) through vascular disease mechanisms. We examined the association of type 2 diabetes with mild cognitive impairment (MCI) and MCI subtype (aMCI and naMCI) overall and by sex.
Methods
Participants were Olmsted County, Minnesota residents (70 years and older) enrolled in a prospective, population-based study. At baseline and every 15 months thereafter, participants were evaluated using the Clinical Dementia Rating scale, a neurological evaluation, and neuropsychological testing for a diagnosis of normal cognition, MCI, and dementia by a consensus panel. Type 2 diabetes was ascertained from the medical records of participants at baseline.
Results
Over a median 4.0 years of follow-up, 348 of 1450 subjects developed MCI. Type 2 diabetes was associated (hazard ratio [95% confidence interval]) with MCI (1.39 [1.08–1.79]), aMCI (1.58 [1.17–2.15]; multiple domain: 1.58 [1.01–2.47]; single domain: 1.49 [1.09–2.05]), and the hazard ratio for naMCI was elevated (1.37 [0.84–2.24]). Diabetes was strongly associated with multiple-domain aMCI in men (2.42 [1.31–4.48]) and an elevated risk of multiple domain naMCI in men (2.11 [0.70–6.33]), and with single domain naMCI in women (2.32 [1.04–5.20]).
Conclusions
Diabetes was associated with an increased risk of MCI in elderly persons. The association of diabetes with MCI may vary with subtype, number of domains, and sex. Prevention and control of diabetes may reduce the risk of MCI and Alzheimer's disease.
doi:10.1016/j.jalz.2013.01.001
PMCID: PMC3830601  PMID: 23562428
Mild cognitive impairment; Risk factors; Type 2 diabetes; Incidence; Cohort studies; Population-based studies; Sex differences; Diabetic retinopathy; Diabetic neuropathy
20.  Association of Pancreatic Polypeptide with Mild Cognitive Impairment Varies by APOE ε4 Allele 
We conducted a preliminary case–control investigation of the association of pancreatic polypeptide (PP) with mild cognitive impairment (MCI) in 202 MCI cases (mean age, 81.6 years) and 202 age- and sex-matched cognitively normal controls in the Mayo Clinic Study of Aging. Plasma PP was measured and examined as the natural logarithm (continuous) and dichotomized at the median. The OR (95% CI) of MCI increased with increasing PP [1.46 (1.04–2.05)]. There was a negative interaction of PP with apolipoprotein E (APOE) ε4 allele; compared to the reference group (no APOE ε4 allele and low PP), the OR (95% CI) for combinations of ε4 and PP were: 2.64 (1.39–5.04) for APOE ε4 plus low PP; 2.09 (1.27–3.45) for no APOE ε4 plus high PP; and 1.91 (1.04–3.53) for no APOE ε4 plus high PP (P for interaction = 0.017). There was also a trend toward a negative interaction with type 2 diabetes (P for interaction = 0.058). Compared to no diabetes and low PP, the OR (95% CI) was 3.02 (1.22–7.46) for low PP plus diabetes but 1.80 (1.01–3.22) for high PP plus diabetes. Participants with high PP had a greater mean (SD) weight loss (kilograms per decade) than persons with low PP [−2.27 (4.07) vs. −1.61 (5.24); P = 0.016]. MCI cases had a non-significantly greater weight loss per decade compared to controls. These findings suggest that high PP alone or jointly with APOE ε4 allele or type 2 diabetes is associated with MCI, and that high PP may mitigate some effects of APOE ε4 allele and type 2 diabetes on cognition. Potential mechanisms may involve PP-related weight loss and centrally mediated effects of PP on cognition. These findings remain to be validated in other studies.
doi:10.3389/fnagi.2015.00172
PMCID: PMC4561818  PMID: 26441635
cognition; mild cognitive impairment; case–control study; pancreatic polypeptide; neuropeptide; type 2 diabetes; apolipoprotein E
21.  Association of Lifetime Intellectual Enrichment with Cognitive Decline in the Older Population 
JAMA neurology  2014;71(8):1017-1024.
IMPORTANCE
Intellectual lifestyle enrichment throughout life is increasingly viewed as a protective strategy against commonly observed cognitive decline in the elderly.
OBJECTIVE
To investigate the association of lifetime intellectual enrichment with baseline cognitive performance and rate of cognitive decline in a non-demented elderly population and to estimate difference (in years) associated with lifetime intellectual enrichment to the onset of cognitive impairment.
DESIGN, SETTING, PARTICIPANTS
Prospective analysis of subjects enrolled in the Mayo Clinic Study of Aging (MCSA), a longitudinal population-based study of cognitive aging in Olmsted County, Minnesota. We studied 1995 non-demented (1718 cognitively normal, 277 MCI) participants in MCSA who completed intellectual lifestyle measures at baseline and underwent at least one follow-up visit.
MAIN OUTCOMES AND MEASURES
We studied the effect of lifetime intellectual enrichment by separating the variables into two non-overlapping principal components: education/occupation-score and mid/late-life cognitive activity measure based on self-report questionnaires. A global cognitive Z-score served as our summary cognition measure. We used linear mixed-effects models to investigate the associations of demographic and intellectual enrichment measures with global cognitive Z-score trajectories.
RESULTS
Baseline cognitive performance was lower in older subjects and in those with lower education/occupation, lower mid/late-life cognitive activity, apolipoprotein E4 (APOE) genotype, and in men. The interaction between the two intellectual enrichment measures was significant such that the beneficial effect of mid/late-life cognitive activity on baseline cognitive performance was reduced with increasing education/occupation. Only baseline age, mid/late-life cognitive activity, and APOE4 genotype were significantly associated with longitudinal change in cognitive performance from baseline. For APOE4 carriers with high lifetime intellectual enrichment (75th percentile of both education/occupation and mid/late-life cognitive activity), the onset of cognitive impairment was about 8.7 years later compared with low lifetime intellectual enrichment (25th percentile of both education/occupation and mid/late-life cognitive activity) in an 80 year old subject.
CONCLUSIONS AND RELEVANCE
Higher levels of education/occupation were associated with higher levels of cognition. Higher levels of mid/late-life leisure activity were also associated with higher levels of cognition, but the slope of this relationship slightly increased over time. Lifetime intellectual enrichment might delay the onset of cognitive impairment and be used as a successful preventive intervention to reduce the impending dementia epidemic.
doi:10.1001/jamaneurol.2014.963
PMCID: PMC4266551  PMID: 25054282
22.  CHRONIC OBSTRUCTIVE PULMONARY DISEASE IS ASSOCIATED WITH MILD COGNITIVE IMPAIRMENT: THE MAYO CLINIC STUDY OF AGING 
Mayo Clinic proceedings  2013;88(11):10.1016/j.mayocp.2013.08.012.
Objectives
To investigate the association of chronic obstructive pulmonary disease (COPD) with mild cognitive impairment (MCI) and MCI sub-types, amnestic MCI (a-MCI) and non-amnestic MCI (na-MCI), in a population-based study of elderly.
Patients and Methods
Participants included 1,927 individuals, aged 70 to 89 years, enrolled in the population-based, Mayo Clinic Study of Aging. Participants were evaluated with a nurse assessment, neurological evaluation, and neuropsychological testing and the diagnosis of MCI was made according to the standardized criteria by a consensus panel. COPD was identified by the review of medical records. The study was conducted from October 1, 2004, through July 31, 2007. The associations of COPD, and disease duration with MCI, and its subtypes were evaluated using logistic regression models adjusted for potential covariates.
Results
Of 1,927 subjects, 288 had COPD (men vs women 17.9% vs 11.8%, p<0.001). As compared to subjects without COPD, the subjects with COPD had higher prevalence of MCI (27.1% vs 14.6%, p<0.001). The odds ratio (OR) of MCI was almost two times higher in subjects with COPD (OR =1.90, 95 %CI =1.35 – 2.65), with a similar effect in men and women. The OR for MCI increased from 1.67 (97% CI, 1.00 – 2.69) in subjects with COPD duration of ≤ 5 years to 2.08 (95% CI, 1.36 – 3.14) in subjects > 5 years.
Conclusion
This population-based study suggests that COPD is associated with increased odds of having MCI and its sub-types. There was a dose-response association with duration of COPD, after controlling for the potential covariates.
doi:10.1016/j.mayocp.2013.08.012
PMCID: PMC3875365  PMID: 24182702
23.  Diabetes and Elevated HbA1c levels are Associated with Brain Hypometabolism but not Amyloid Accumulation 
Dysfunctional insulin signaling may affect brain metabolism or amyloid deposition. We investigated the associations of type 2 diabetes with amyloid accumulation measured using 11C-Pittsburgh Compound B (PiB) and brain hypometabolism measured using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET).
Methods
We studied a sample of non-demented participants from the population-based Mayo Clinic Study of Aging. All subjects underwent MRI, amyloid PET and FDG PET. Alzheimer’s disease (AD) signature and region of interest (ROI) measures for PiB retention ratio and FDG ratio were measured. Diabetes was assessed from the Rochester Epidemiology Project medical records-linkage system.
Results
Among 749 participants (median age 79.0 years; 56.5% male, 81.0% cognitively normal; 20.6% diabetics), FDG hypometabolism (FDG ratio < 1.31) in the AD signature meta-ROI was more common in diabetics (48.1%) than in non-diabetics (28.9%; p <0.001). The median FDG ratio was lower in diabetics vs. non-diabetics in the AD signature meta-ROI (1.32 vs. 1.40, p < 0.001), and in the angular (1.40 vs. 1.48, p < 0.001) and posterior cingulate gyri ROIs (1.63 vs. 1.72, p < 0.001). The odds ratio (OR [95% confidence interval]) for abnormal AD signature FDG hypometabolism was elevated (OR, 2.28 [1.56, 3.33]) in diabetics vs. non-diabetics after adjustment for age, sex, and education, and after additional adjustment for Apolipoprotein ε4 allele, glycemic level, and cognitive status (OR, 1.69 [1.10, 2.60]). However, AD signature PiB retention ratio was similar in diabetics vs. non-diabetics (OR, 1.03 [0.71, 1.51]; p = 0.87). In post-hoc analyses in non-diabetics, a 1% increase in HBA1c was associated with greater AD signature hypometabolism in cognitively normal subjects (OR, 1.93 [1.03, 3.62; p = 0.04]) and in the total cohort (OR 1.59 [0.92, 2.75; p = 0.10).
Conclusion
Diabetes and poor glycemic control in non-diabetics may enhance glucose hypometabolism in AD signature regions. These factors should be investigated in longitudinal studies for their role in detecting onset of symptoms in AD.
doi:10.2967/jnumed.113.132647
PMCID: PMC4011952  PMID: 24652830
Diabetes; cerebral glucose metabolism; FDG- and PiB-PET imaging; hemoglobin A1c; amyloid accumulation
24.  Neuropsychiatric symptoms in Alzheimer’s disease: Past progress and anticipation of the future 
Neuropsychiatric symptoms (NPS) in Alzheimer’s disease (AD) are widespread and disabling. This has been known since Dr. Alois Alzheimer’s first case, Frau Auguste D., presented with emotional distress and delusions of infidelity/excessive jealousy, followed by cognitive symptoms. Being cognizant of this, in 2010 the Alzheimer’s Association convened a Research Roundtable on the topic of NPS in AD. A major outcome of the Roundtable was the founding of a Professional Interest Area (PIA) within the International Society to Advance Alzheimer’s Research and Treatment (ISTAART). The NPS-PIA has prepared a series of documents that are intended to summarize the literature and provide more detailed specific recommendations for NPS research. This overview paper is the first of these living documents that will be updated periodically as the science advances. The overview is followed by syndrome specific synthetic reviews and recommendations prepared by NPS-PIA Workgroups on depression, apathy, sleep, agitation, and psychosis.
doi:10.1016/j.jalz.2012.12.001
PMCID: PMC3766403  PMID: 23562430
Neuropsychiatric symptoms; Behavioral and psychological symptoms of dementia; Agitation/aggression; Sleep disorders; Depression; Apathy; Psychosis; Delusions; Hallucinations; Dementia; Alzheimer’s disease; Mild cognitive impairment; Mild Behavioral Impairment
25.  Risk factors for dementia with Lewy bodies 
Neurology  2013;81(9):833-840.
Objective:
To determine the risk factors associated with dementia with Lewy bodies (DLB).
Methods:
We identified 147 subjects with DLB and sampled 2 sex- and age-matched cognitively normal control subjects for each case. We also identified an unmatched comparison group of 236 subjects with Alzheimer disease (AD). We evaluated 19 candidate risk factors in the study cohort.
Results:
Compared with controls, subjects with DLB were more likely to have a history of anxiety (odds ratio; 95% confidence interval) (7.4; 3.5–16; p < 0.0001), depression (6.0; 3.7–9.5; p < 0.0001), stroke (2.8; 1.3–6.3; p = 0.01), a family history of Parkinson disease (PD) (4.6; 2.5–8.6; p < 0.0001), and carry APOE ε4 alleles (2.2; 1.5–3.3; p < 0.0001), but less likely to have had cancer (0.44; 0.27–0.70; p = 0.0006) or use caffeine (0.29; 0.14–0.57; p < 0.0001) with a similar trend for alcohol (0.65; 0.42–1.0; p = 0.0501). Compared with subjects with AD, subjects with DLB were younger (72.5 vs 74.9 years, p = 0.021) and more likely to be male (odds ratio; 95% confidence interval) (5.3; 3.3–8.5; p < 0.0001), have a history of depression (4.3; 2.4–7.5; p < 0.0001), be more educated (2.5; 1.1–5.6; p = 0.031), have a positive family history of PD (5.0; 2.4–10; p < 0.0001), have no APOE ε4 alleles (0.61; 0.40–0.93; p = 0.02), and to have had an oophorectomy before age 45 years (7.6; 1.5–39; p = 0.015).
Conclusion:
DLB risk factors are an amalgam of those for AD and PD. Smoking and education, which have opposing risk effects on AD and PD, are not risk factors for DLB; however, depression and low caffeine intake, both risk factors for AD and PD, increase risk of DLB more strongly than in either.
doi:10.1212/WNL.0b013e3182a2cbd1
PMCID: PMC3908463  PMID: 23892702

Results 1-25 (66)