Search tips
Search criteria

Results 1-25 (55)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes 
The Journal of endocrinology  2013;216(1):1-11.
Diabetic neuropathy (DN) is the most common complication of diabetes and is characterized by distal-to-proximal loss of peripheral nerve axons. The idea of tissue-specific pathological alterations in energy metabolism in diabetic complications-prone tissues is emerging. Altered nerve metabolism in type 1 diabetes models is observed; however, therapeutic strategies based on these models offer limited efficacy to type 2 diabetic patients with DN. Therefore, understanding how peripheral nerves metabolically adapt to the unique type 2 diabetic environment is critical to develop disease-modifying treatments. In the current study, we utilized targeted LC/MS/MS to characterize the glycolytic and tricarboxylic acid (TCA) cycle metabolomes in sural nerve, sciatic nerve and dorsal root ganglia (DRG) from male type 2 diabetic mice (BKS.Cg-m+/+Leprdb; db/db) and controls (db/+). We report depletion of glycolytic intermediates in diabetic sural nerve and sciatic nerve (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate (sural nerve only), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, lactate), with no significant changes in DRG. Citrate and isocitrate TCA cycle intermediates were decreased in sural nerve, sciatic nerve and DRG from diabetic mice. Utilizing LC/ESI/MS/MS and HPLC methods, we also observed increased protein and lipid oxidation (nitrotyrosine; hydroxyoctadecadienoic acids, HODEs) in db/db tissue, with a proximal-to-distal increase in oxidative stress, with associated decreased aconitase enzyme activity. We propose a preliminary model, whereby the greater change in metabolomic profile, increase in oxidative stress, and decrease in TCA cycle enzyme activity may cause distal peripheral nerve to rely on truncated TCA cycle metabolism in the type 2 diabetes environment.
PMCID: PMC3665007  PMID: 23086140
diabetes; neuropathy; metabolomics; sural nerve; sciatic nerve; dorsal root ganglia
2.  Apolipoprotein E Knockout as the Basis for Mouse Models of Dyslipidemia-Induced Neuropathy 
Experimental neurology  2012;239:102-110.
Dyslipidemia has been identified as an important pathogenic risk factor for diabetic neuropathy, but current animal models do not adequately reproduce the lipid profile observed in human diabetics (increased triglycerides with an elevated LDL-cholesterol and reduced HDL-cholesterol). High fat feeding of mice produces hyperlipidemia, but mice are resistant to increases in the LDL to HDL ratio, reducing the potential for peripheral lipid deposits to impact neuropathy, as is postulated to occur in human subjects. Genetic manipulations provide an alternative approach to reproducing a neuropathic plasma lipid profile. Based on findings from the atherosclerosis literature, we began with knockout of ApoE. Since knockout of ApoE alone only partially mimics the human diabetic lipid profile, we examined the impact of its combination with a well-characterized model of type 2 diabetes exhibiting neuropathy, the db/db mouse. We added further gene manipulations to increase hyperlipidemia by using mice with both ApoE and ApoB48 knockout on the ob/+ (leptin mutation) mice. In all of these models, we found that either the db/db or ob/ob genotypes had increased body weight, hyperlipidemia, hyperglycemia, and evidence of neuropathy compared with the control groups (db/+ or ob/+, respectively). We found that ApoE knockout combined with leptin receptor knockout produced a lipid profile most closely modeling human dyslipidemia that promotes neuropathy. ApoE knockout combined with additional ApoB48 and leptin knockout produced similar changes of smaller magnitude, but, notably, an increase in HDL-cholesterol. Our data suggest that the overall effects of ApoE knockout, either directly upon nerve structure and function or indirectly on lipid metabolism, are insufficient to significantly alter the course of diabetic neuropathy. Although these models ultimately do not deliver optimal lipid profiles for translational diabetic neuropathy research, they do present glycemic and lipid profile properties of value for future therapeutic investigations.
PMCID: PMC3534788  PMID: 23059459
peripheral neuropathy; dyslipidemia; diabetes; apolipoprotein E; apolipoprotein B48; lipid profile; mouse
3.  Bioenergetics in Diabetic Neuropathy- What We Need to Know 
Progress in developing treatments for diabetic neuropathy is slowed by our limited understanding of how disturbances in metabolic substrates- glucose and fatty acids- produce nerve injury. In this review, we present the current oxidative stress hypothesis and experimental data that support it. We identify weaknesses in our understanding of diabetes-disordered metabolism in the neurovascular unit; i.e. in critical cell types of the microvascular endothelium, peripheral sensory neurons, and supporting Schwann cells. Greater understanding of peripheral nervous system bioenergetics may provide insight into new drug therapies or improvements in dietary interventions in diabetes or even pre-diabetes.
PMCID: PMC3589977  PMID: 22548617
4.  Effect of Mild Hyperglycemia on Autonomic Function in Obstructive Sleep Apnea 
Obstructive sleep apnea (OSA) has been hypothesized to cause a hypersympathetic state, which may be the mechanism for the increased incidence of cardiovascular disease in OSA. However, there is a high prevalence of hyperglycemia in OSA patients which may also contribute to autonomic dysfunction.
Thirty-five patients with OSA and eleven controls with average body-mass index (BMI) of 32.0 ± 4.6 underwent polysomnography, glucose tolerance testing, autonomic function tests, lying and standing catecholamines, overnight urine collection, and baseline ECG and continuous blood pressure measurements for spectral analysis. A linear regression model adjusting for age and BMI was used to analyze spectral data, other outcome measures were analyzed with Kruskal-Wallis test.
Twenty-three OSA patients and two control patients had hyperglycemia (based on 2001 American Diabetes Association criteria). AHI correlated with total power and low frequency (LF) power (r=0.138, 0.177, p=0.031; and r= 0.013) but not with the LF/high frequency (HF) ratio (p=0.589). Glucose negatively correlated with LF systolic power (r=-0.171, p=0.038) but not AHI (p=0.586) and was marginally associated with pnn50, total power, LF, and HF power (p ranged from 0.07 to 0.08).
These data suggest that patients with OSA and mild hyperglycemia have a trend towards lower heart rate variability and sympathetic tone. Hyperglycemia is an important confounder and should be evaluated in studies of OSA and autonomic function.
PMCID: PMC3925507  PMID: 21796355
5.  Stem Cell Technology for Neurodegenerative Diseases 
Annals of neurology  2011;70(3):353-361.
Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion on the burden of these diseases on society, emphasizing the need for increased attention towards advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.
PMCID: PMC3177143  PMID: 21905078
6.  The myopathy-causing mutation DNM2-S619L leads to defective tubulation in vitro and in developing zebrafish 
Disease Models & Mechanisms  2013;7(1):157-161.
DNM2 is a ubiquitously expressed GTPase that regulates multiple subcellular processes. Mutations in DNM2 are a common cause of centronuclear myopathy, a severe disorder characterized by altered skeletal muscle structure and function. The precise mechanisms underlying disease-associated DNM2 mutations are unresolved. We examined the common DNM2-S619L mutation using both in vitro and in vivo approaches. Expression of DNM2-S619L in zebrafish led to the accumulation of aberrant vesicular structures and to defective excitation-contraction coupling. Expression of DNM2-S619L in COS7 cells resulted in defective BIN1-dependent tubule formation. These data suggest that DNM2-S619L causes disease, in part, by interfering with membrane tubulation.
PMCID: PMC3882057  PMID: 24135484
Dynamin-2; Excitation-contraction coupling; Myopathy
7.  The effects of anesthesia on measures of nerve conduction velocity in male C57Bl6/J mice 
Neuroscience letters  2010;483(2):127-131.
PMCID: PMC2941214  PMID: 20691755
sciatic nerve; sural nerve; isoflurane; 2-2-2 tribromoethanol; surface temperature
8.  Vascular endothelial growth factor prevents G93A-SOD1-induced motor neuron degeneration 
Developmental neurobiology  2009;69(13):871-884.
Amyotrophic Lateral Sclerosis (ALS) is an adult-onset neurodegenerative disorder characterized by selective loss of motor neurons (MNs). Twenty percent of familial ALS cases are associated with mutations in Cu2+/Zn2+ superoxide dismutase (SOD1). To specifically understand the cellular mechanisms underlying mutant SOD1 toxicity we have established an in vitro model of ALS using rat primary MN cultures transfected with an adenoviral vector encoding a mutant SOD1, G93A-SOD1. Transfected cells undergo axonal degeneration and alterations in biochemical responses characteristic of cell death such as activation of caspase-3. Vascular endothelial growth factor (VEGF) is an angiogenic and neuroprotective growth factor that can increase axonal outgrowth, block neuronal apoptosis and promote neurogenesis. Decreased VEGF gene expression in mice results in a phenotype similar to that seen in patients with ALS, thus linking loss of VEGF to the pathogenesis of MN degeneration. Decreased neurotrophic signals prior to and during disease progression may increase MN susceptibility to mutant SOD1-induced toxicity. In this study we demonstrate a decrease in VEGF and VEGFR2 levels in the spinal cord of G93A-SOD1 ALS mice. Furthermore, in isolated MN cultures, VEGF alleviates the effects of G93A-SOD1 toxicity and neuroprotection involves phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling. Overall, these studies validate the usefulness of VEGF as a potential therapeutic factor for the treatment of ALS and give valuable insight into the responsible signaling pathways and mechanisms involved.
PMCID: PMC2853013  PMID: 19672955
Amyotrophic lateral sclerosis; Neuroprotection; Mechanism; Phosphatidylinositol 3-kinase/protein kinase B; Vascular endothelial growth factor
9.  Elevated Triglycerides Correlate With Progression of Diabetic Neuropathy 
Diabetes  2009;58(7):1634-1640.
To evaluate mechanisms underlying diabetic neuropathy progression using indexes of sural nerve morphometry obtained from two identical randomized, placebo-controlled clinical trials.
Sural nerve myelinated fiber density (MFD), nerve conduction velocities (NCVs), vibration perception thresholds, clinical symptom scores, and a visual analog scale for pain were analyzed in participants with diabetic neuropathy. A loss of ≥500 fibers/mm2 in sural nerve MFD over 52 weeks was defined as progressing diabetic neuropathy, and a MFD loss of ≤100 fibers/mm2 during the same time interval as nonprogressing diabetic neuropathy. The progressing and nonprogressing cohorts were matched for baseline characteristics using an O'Brien rank-sum and baseline MFD.
At 52 weeks, the progressing cohort demonstrated a 25% decrease (P < 0.0001) from baseline in MFD, while the nonprogressing cohort remained unchanged. MFD was not affected by active drug treatment (P = 0.87), diabetes duration (P = 0.48), age (P = 0.11), or BMI (P = 0.30). Among all variables tested, elevated triglycerides and decreased peroneal motor NCV at baseline significantly correlated with loss of MFD at 52 weeks (P = 0.04).
In this cohort of participants with mild to moderate diabetic neuropathy, elevated triglycerides correlated with MFD loss independent of disease duration, age, diabetes control, or other variables. These data support the evolving concept that hyperlipidemia is instrumental in the progression of diabetic neuropathy.
PMCID: PMC2699859  PMID: 19411614
10.  Hydrogen Peroxide-Induced Akt Phosphorylation Regulates Bax Activation 
Biochimie  2009;91(5):577-585.
Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences posttranslational modification of Bax and inactivate a key component of the cell death machinery.
PMCID: PMC2697849  PMID: 19278624
Reactive Oxygen Species (ROS); PI3/Akt; Bax; Mitochondria; Apoptosis
11.  Mouse Models of Diabetic Neuropathy 
Neurobiology of disease  2007;28(3):276-285.
Diabetic neuropathy (DN) is a debilitating complication of type 1 and type 2 diabetes. Rodent models of DN do not fully replicate the pathology observed in human patients. We examined DN in streptozotocin (STZ)-induced [B6] and spontaneous type 1 diabetes [B6Ins2Akita] and spontaneous type 2 diabetes [B6-db/db, BKS-db/db]. DN was defined using the criteria of the Animal Models of Diabetic Complications Consortium ( Despite persistent hyperglycemia, the STZ-treated B6 and B6Ins2Akita mice were resistant to the development of DN. In contrast, DN developed in both type 2 diabetes models: the B6-db/db and BKS-db/db mice. The persistence of hyperglycemia and development of DN in the B6-db/db mice required an increased fat diet while the BKS-db/db mice developed severe DN and remained hyperglycemic on standard mouse chow. Our data support the hypothesis that genetic background and diet influence the development of DN and should be considered when developing new models of DN.
PMCID: PMC3730836  PMID: 17804249
BKS; streptozotocin; B6Ins2Akita; sciatic nerve; dorsal root ganglia
12.  SOD2 Protects Neurons from Injury in Cell Culture and Animal Models of Diabetic Neuropathy 
Experimental neurology  2007;208(2):216-227.
Hyperglycemia-induced oxidative stress is an inciting event in the development of diabetic complications including diabetic neuropathy. Our observations of significant oxidative stress and morphological abnormalities in mitochondria led us to examine manganese superoxide dismutase (SOD2), the enzyme responsible for mitochondrial detoxification of oxygen radicals. We demonstrate that over expression of SOD2 decreases superoxide (O2•−) in cultured primary dorsal root ganglion (DRG) neurons and subsequently blocks caspase-3 activation and cellular injury. Under expression of SOD2 in dissociated DRG cultures from adult SOD2+/− mice results in increased levels of O2•−, activation of caspase-3 cleavage and decreased neurite outgrowth under basal conditions that are exacerbated by hyperglycemia. These profound changes in sensory neurons led us to explore the effects of decreased SOD2 on the development of diabetic neuropathy (DN) in mice. DN was assessed in SOD2+/− C57BL/6J mice and their SOD2+/+ litter mates following streptozotocin (STZ) treatment. These animals, while hyperglycemic, do not display any signs of DN. DN was observed in the C57BL/6Jdb/db mouse, and decreased expression of SOD2 in these animals increased DN. Our data suggest that SOD2 activity is an important cellular modifier of neuronal oxidative defense against hyperglycemic injury.
PMCID: PMC2190625  PMID: 17927981
neuropathy; oxidative stress; SOD2
13.  Neurodegeneration and early lethality in SOD2-deficient mice: a comprehensive analysis of the central and peripheral nervous systems 
Neuroscience  2012;212:201-213.
The contribution of oxidative stress to diabetic complications including neuropathy is widely known. Mitochondrial and cellular damage are associated with the overproduction of reactive oxygen species and decreased levels or function of the cellular antioxidant mitochondrial manganese superoxide dismutase (SOD2). We hypothesized that targeted SOD2 deletion in the peripheral nervous system using cre-lox technology under control of the nestin promoter would accelerate neuropathy in a type 2 model of diabetes, the BKS.db/db mouse. SOD2-deficient mice, however, demonstrated severe gait deformities and seizures and died by 20 days of age. Examination of SOD2 expression levels revealed that SOD2 was lost in brain and reduced in the spinal cord, but appeared normal in dorsal root ganglia and peripheral nerves in SOD2-deficient mice. These findings indicate incomplete targeted knockout of SOD2. Morphological examination revealed cortical lesions similar to spongiform encephalopathy in the brain of SOD2-deficient mice. No lesions were evident in the spinal cord, but changes in myelin within the sciatic and sural nerves including a lack of cohesion between layers of compact myelin was observed. Together, these results indicate that targeted neuronal SOD2 knockout using the nestin promoter results in severe central nervous system degeneration and perinatal lethality in mice. A specific peripheral nervous system-targeting construct is required to examine the consequences of SOD2 knockout in diabetic neuropathy.
PMCID: PMC3367053  PMID: 22516022
ROS; SOD2; oxidative stress; diabetic neuropathy; BKS.db/db mice
14.  Peripheral nervous system insulin resistance in ob/ob mice 
A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis.
The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons.
These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy.
PMCID: PMC3893412  PMID: 24252636
Diabetic neuropathy; Neuronal insulin resistance; Neurotrophic support
15.  A novel approach to study motor neurons from zebrafish embryos and larvae in culture 
Journal of neuroscience methods  2012;205(2):277-282.
Zebrafish are becoming increasingly popular models for examining the mechanisms of and treatments for neurological diseases. The available methods and technology to examine disease processes in vivo are increasing, however, detailed observations of subcellular structures and processes are complex in whole organisms. To address this need, we developed a primary motor neuron (MN) culture technique for utilization with zebrafish neurological disease models. Our protocol enables the culturing of cells from embryos older than 24 hours post-fertilization, at points after MN axonal development and outgrowth begins, which enables MN axons to develop in vivo in the context of the normal endogenous cues of the model organism, while also providing the accessibility of an in vitro system. When utilized with the increasing number of genetically modified or transgenic models of neurological diseases, this approach provides a novel tool for the examination of cellular and subcellular disease mechanisms, and offers a new platform for therapeutic discoveries in zebrafish.
PMCID: PMC3433854  PMID: 22285259
zebrafish; motor neuron; ex vivo culture; primary culture
16.  Integrin Expression Regulates Neuroblastoma Attachment and Migration1 
Neoplasia (New York, N.Y.)  2004;6(4):332-342.
Neuroblastoma (NBL) is the most common malignant disease of infancy, and children with bone metastasis have a mortality rate greater than 90%. Two major classes of proteins, integrins and growth factors, regulate the metastatic process. We have previously shown that tumorigenic NBL cells express higher levels of the type I insulin-like growth factor receptor (IGF-IR) and that β1 integrin expression is inversely proportional to tumorigenic potential in NBL. In the current study, we analyze the effect of β1 integrin and IGF-IR on NBL cell attachment and migration. Nontumorigenic S-cells express high levels of β1 integrin, whereas tumorigenic N-cells express little β1 integrin. Alterations in β1 integrin are due to regulation at the protein level, as translation is decreased in N-type cells. Moreover, inhibition of protein synthesis shows that β1 integrin is degraded more slowly in S-type cells (SHEP) than in N-type cells (SH-SY5Y and IMR32). Inhibition of α5β1 integrin prevents SHEP (but not SH-SY5Y or IMR32) cell attachment to fibronectin and increases SHEP cell migration. Increases in IGF-IR decrease β1 integrin expression, and enhance SHEP cell migration, potentially through increased expression of αvβ3. These data suggest that specific classes of integrins in concert with IGF-IR regulate NBL attachment and migration.
PMCID: PMC1502107  PMID: 15256055
Neuroblastoma; integrins; attachment; migration; fibronectin
17.  DCCT and EDIC Studies in Type 1 Diabetes: Lessons for Diabetic Neuropathy Regarding Metabolic Memory and Natural History 
Current diabetes reports  2010;10(4):276-282.
The DCCT/EDIC (Diabetes Control and Complications Trial/ Epidemiology of Diabetes Interventions and Complications) provides a comprehensive characterization of the natural history of diabetic neuropathy in patients with type 1 diabetes and provides insight into the impact of intensive insulin therapy in disease progression. The lessons learned about the natural history of distal symmetrical polyneuropathy and cardiovascular autonomic neuropathy and the impact of glycemic control on neuropathy are discussed in this review.
PMCID: PMC3608672  PMID: 20464532
Distal symmetrical polyneuropathy; Cardiovascular autonomic neuropathy; Nerve conduction studies; Heart rate variability studies; Glycemic control
18.  Degradation and Dephosphorylation of Focal Adhesion Kinase During Okadaic Acid-Induced Apoptosis in Human Neuroblastoma Cells1 
Neoplasia (New York, N.Y.)  2003;5(5):405-416.
Focal adhesion kinase (FAK) prevents apoptosis in many cell types. We have reported that tyrosine residues in FAK are dephosphorylated and FAK is degraded during mannitol-induced apoptosis in human neuroblastoma cells. Several studies suggest that FAK dephosphorylation and degradation are separate events. The current study defines the relationship between FAK dephosphorylation and degradation in neuroblastoma cells using okadaic acid (OA). OA, a serine phosphatase inhibitor, promotes serine/threonine phosphorylation, which in turn blocks tyrosine phosphorylation. OA induced focal adhesion loss, actin cytoskeleton disorganization, and cellular detachment, which corresponded to a loss of FAK Tyr397 phosphorylation. These changes preceded caspase-3 activation, Akt and MAP kinase activity loss, protein ubiquitination, and cellular apoptosis. Insulin-like growth factor-I prevented mannitol-induced, but not OA-induced, substrate detachment and FAK Tyr397 dephosphorylation, and the effects of OA on FAK Tyr397 phosphorylation were irreversible. The proteolytic degradation of FAK is temporally distinct from its tyrosine dephosphorylation, occurring when apoptotic pathways are already initiated and during a generalized destruction of signaling proteins. Therefore, agents resulting in the dephosphorylation of FAK may be beneficial for therapeutic treatment, irrespective of FAK protein levels, as this may result in apoptosis, which cannot be prevented by growth factor signaling.
PMCID: PMC1502611  PMID: 14670178
Neuroblastoma; focal adhesion kinase; insulin-like growth factor-I; okadaic acid; apoptosis
19.  Oxidative stress and diabetic neuropathy: a new understanding of an old problem 
Journal of Clinical Investigation  2003;111(4):431-433.
PMCID: PMC151930  PMID: 12588877
20.  Insulin resistance in the nervous system 
Metabolic syndrome is a cluster of cardiovascular risk factors including obesity, diabetes and dyslipidemia. Insulin resistance (IR) is at the core of metabolic syndrome. In adipose tissue and muscle, IR results in decreased insulin signaling, primarily affecting downstream phosphatidylinositol 3-kinase (PI3K)/Akt signaling. It was recently proposed that neurons can develop hyperinsulinemia-induced IR, which in turn results in injury to the peripheral and central nervous systems and is probably pathogenic in common neurological disorders such as diabetic neuropathy and Alzheimer’s disease (AD). This review presents evidence indicating that, similarly to insulin-dependent metabolically active tissues such as fat and muscle, neurons also develop IR and thus cannot respond to the neurotrophic properties of insulin, resulting in neuronal injury, subsequent dysfunction and disease states.
PMCID: PMC3392648  PMID: 22245457
21.  Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes 
Neurobiology of disease  2011;45(1):280-287.
Painful diabetic neuropathy (PDN) is a common, yet devastating complication of type 2 diabetes. At this time, there is no objective test for diagnosing PDN. In the current study, we measured the peptidergic intraepidermal nerve fiber densities (IENFD) from hind paws of the db/db mouse, an animal model for type 2 diabetes, during the period of mechanical allodynia from 6–12 wk of age. Intraepidermal nerve fibers (IENF) of the hind footpads were identified by protein gene product (PGP) 9.5 immunohistochemistry. The peptidergic IENF were determined by double immunofluorescence using anti-PGP9.5 and antibodies against tropomyosin-receptor-kinase (Trk) A. We observed a significant increase in PGP9.5-positive IENFD at 8 and 10 wk of age. Similarly, Trk A-positive peptidergic IENF, which also express substance P and calcitonin gene related peptide in db/db mice, were observed to be elevated from 1.5 to 2 fold over controls. This upregulation ended at 16 wk of age, in accordance with the reduction of mechanical allodynia. Anti-NGF treatment significantly inhibited the upregulation of peptidergic IENFD during the period of mechanical allodynia, suggesting increased neurotrophism may mediate this phenomenon. In addition, SB203580, an inhibitor of p38, blocked the increase in peptidergic IENFD in db/db mice. The current results suggest peptidergic IENFD could be a potential diagnostic indicator for PDN in type 2 diabetes. Furthermore, the inhibition of NGF-p38 signaling could be a potential therapeutic strategy for treating this painful condition.
PMCID: PMC3225563  PMID: 21872660
Diabetic pain; intraepidermal nerve fibers; type 2 diabetes; nerve growth factor; peptidergic nerve fibers; mechanical allodynia
22.  The identification of gene expression profiles associated with progression of human diabetic neuropathy 
Brain  2011;134(11):3222-3235.
Diabetic neuropathy is a common complication of diabetes. While multiple pathways are implicated in the pathophysiology of diabetic neuropathy, there are no specific treatments and no means to predict diabetic neuropathy onset or progression. Here, we identify gene expression signatures related to diabetic neuropathy and develop computational classification models of diabetic neuropathy progression. Microarray experiments were performed on 50 samples of human sural nerves collected during a 52-week clinical trial. A series of bioinformatics analyses identified differentially expressed genes and their networks and biological pathways potentially responsible for the progression of diabetic neuropathy. We identified 532 differentially expressed genes between patient samples with progressing or non-progressing diabetic neuropathy, and found these were functionally enriched in pathways involving inflammatory responses and lipid metabolism. A literature-derived co-citation network of the differentially expressed genes revealed gene subnetworks centred on apolipoprotein E, jun, leptin, serpin peptidase inhibitor E type 1 and peroxisome proliferator-activated receptor gamma. The differentially expressed genes were used to classify a test set of patients with regard to diabetic neuropathy progression. Ridge regression models containing 14 differentially expressed genes correctly classified the progression status of 92% of patients (P < 0.001). To our knowledge, this is the first study to identify transcriptional changes associated with diabetic neuropathy progression in human sural nerve biopsies and describe their potential utility in classifying diabetic neuropathy. Our results identifying the unique gene signature of patients with progressive diabetic neuropathy will facilitate the development of new mechanism-based diagnostics and therapies.
PMCID: PMC3212712  PMID: 21926103
biomarkers; diabetic neuropathy; classification model; sural nerve; gene expression
23.  Transcriptional Profiling of Diabetic Neuropathy in the BKS db/db Mouse 
Diabetes  2011;60(7):1981-1989.
A better understanding of the molecular mechanisms underlying the development and progression of diabetic neuropathy (DN) is essential for the design of mechanism-based therapies. We examined changes in global gene expression to define pathways regulated by diabetes in peripheral nerve.
Microarray data for 24-week-old BKS db/db and db/+ mouse sciatic nerve were analyzed to define significantly differentially expressed genes (DEGs); DEGs were further analyzed to identify regulated biological processes and pathways. Expression profile clustering was performed to identify coexpressed DEGs. A set of coexpressed lipid metabolism genes was used for promoter sequence analysis.
Gene expression changes are consistent with structural changes of axonal degeneration. Pathways regulated in the db/db nerve include lipid metabolism, carbohydrate metabolism, energy metabolism, peroxisome proliferator–activated receptor signaling, apoptosis, and axon guidance. Promoter sequences of lipid metabolism–related genes exhibit evidence of coregulation of lipid metabolism and nervous system development genes.
Our data support existing hypotheses regarding hyperglycemia-mediated nerve damage in DN. Moreover, our analyses revealed a possible coregulation mechanism connecting hyperlipidemia and axonal degeneration.
PMCID: PMC3121428  PMID: 21617178
24.  Altered Excitation-inhibition Balance in the Brain of Patients with Diabetic Neuropathy 
Academic Radiology  2012;19(5):607-612.
Rationale and Objectives
To assess differences in excitatory (glutamate/glutamine or Glx) and inhibitory (γ-Aminobutyric acid or GABA) neurotransmitter levels using MR spectroscopy in pain processing regions of the brain in patients diabetic neuropathy (DN) and positive sensory symptoms and age-matched healthy control (HC) subjects.
Materials and Methods
Seven diabetic patients (5 males, 2 females, mean age = 57.0 ± 8.5 years) with confirmed DN and positive sensory symptoms and 7 age and sex matched HC subjects (mean age = 57.7 ± 3.2 years) underwent 3 Tesla MR spectroscopy. Glx and GABA levels were quantified in the right anterior and posterior insula, anterior cingulate cortex and right thalamus.
Mean Glx levels were significantly higher and mean GABA levels were significantly lower within the posterior insula in the DN patients compared to HC (P = 0.005 and 0.012 respectively).
This pilot data demonstrates an excitatory/inhibitory neurotransmitter imbalance in the brain of in patients with DN and positive sensory symptoms compared to pain free HC subjects.
PMCID: PMC3374728  PMID: 22463961
Diabetes; neuropathy; MR spectroscopy; pain
25.  Cortical Neurons Develop Insulin Resistance and Blunted Akt Signaling: A Potential Mechanism Contributing to Enhanced Ischemic Injury in Diabetes 
Antioxidants & Redox Signaling  2011;14(10):1829-1839.
Patients with diabetes are at higher risk of stroke and experience increased morbidity and mortality after stroke. We hypothesized that cortical neurons develop insulin resistance, which decreases neuroprotection via circulating insulin and insulin-like growth factor-I (IGF-I). Acute insulin treatment of primary embryonic cortical neurons activated insulin signaling including phosphorylation of the insulin receptor, extracellular signal-regulated kinase (ERK), Akt, p70S6K, and glycogen synthase kinase-3β (GSK-3β). To mimic insulin resistance, cortical neurons were chronically treated with 25 mM glucose, 0.2 mM palmitic acid (PA), or 20 nM insulin before acute exposure to 20 nM insulin. Cortical neurons pretreated with insulin, but not glucose or PA, exhibited blunted phosphorylation of Akt, p70S6K, and GSK-3β with no change detected in ERK. Inhibition of the phosphatidylinositol 3-kinase (PI3-K) pathway during insulin pretreatment restored acute insulin-mediated Akt phosphorylation. Cortical neurons in adult BKS-db/db mice exhibited higher basal Akt phosphorylation than BKS-db+ mice and did not respond to insulin. Our results indicate that prolonged hyperinsulinemia leads to insulin resistance in cortical neurons. Decreased sensitivity to neuroprotective ligands may explain the increased neuronal damage reported in both experimental models of diabetes and diabetic patients after ischemia-reperfusion injury. Antioxid. Redox Signal. 14, 1829–1839.
PMCID: PMC3078499  PMID: 21194385

Results 1-25 (55)