Search tips
Search criteria

Results 1-25 (42)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Cerebellar and posterior fossa malformations in patients with autism-associated chromosome 22q13 terminal deletion 
The 22q13.3 deletion causes a neurodevelopmental syndrome, also known as Phelan-McDermid syndrome (MIM #606232), characterized by developmental delay and severe delay or absence of expressive speech. Two patients with hemizygous chromosome 22q13.3 telomeric deletion were referred to us when brain-imaging studies revealed cerebellar vermis hypoplasia (CBVH). To determine whether developmental abnormalities of the cerebellum are a consistent feature of the 22q13.3 deletion syndrome, we examined brain-imaging studies for 10 unrelated subjects with 22q13 terminal deletion. In 7 cases where the availability of DNA and array technology allowed, we mapped deletion boundaries using comparative intensity analysis with single nucleotide polymorphism (SNP) microarrays. Approximate deletion boundaries for 3 additional cases were derived from clinical or published molecular data. We also examined brain-imaging studies for a patient with an intragenic SHANK3 mutation. We report the first brain-imaging data showing that some patients with 22q13 deletions have severe posterior CBVH, and one individual with a SHANK3 mutation has a normal cerebellum. This genotype-phenotype study suggests that the 22q13 deletion phenotype includes abnormal posterior fossa structures that are unlikely to be attributed to SHANK3 disruption. Other genes in the region, including PLXNB2 and MAPK8IP2, display brain expression patterns and mouse mutant phenotypes critical for proper cerebellar development. Future studies of these genes may elucidate their relationship to 22q13.3 deletion phenotypes.
PMCID: PMC3733662  PMID: 23225497
cerebellum; chromosome; deletion; SHANK3
2.  Beyond Gómez-López-Hernández Syndrome: Recurring Phenotypic Themes in Rhombencephalosynapsis 
Rhombencephalosynapsis (RES) is an uncommon cerebellar malformation characterized by fusion of the hemispheres without an intervening vermis. Frequently described in association with Gómez-López-Hernández syndrome, RES also occurs in conjunction with VACTERL features and with holoprosencephaly (HPE). We sought to determine the full phenotypic spectrum of RES in a large cohort of patients. Information was obtained through database review, patient questionnaire, radiographic and morphologic assessment, and statistical analysis. We assessed 53 patients. 33 had alopecia, 3 had trigeminal anesthesia, 14 had VACTERL features and 2 had HPE with aventriculy. Specific craniofacial features were seen throughout the cohort, but were more common in patients with alopecia. We noted substantial overlap between groups. We conclude that although some distinct subgroups can be delineated, the overlapping features seen in our cohort suggest an underlying spectrum of RES-associated malformations rather than a collection of discrete syndromes.
PMCID: PMC3448816  PMID: 22965664
Rhombencephalosynapsis; Gómez-López-Hernández syndrome; Congenital Triangular Alopecia; Holoprosencephaly; Aventriculy; VACTERL; Developmental Field Defect
3.  Neuropathology of brain and spinal malformations in a case of monosomy 1p36 
Monosomy 1p36 is the most common subtelomeric chromosomal deletion linked to mental retardation and seizures. Neuroimaging studies suggest that monosomy 1p36 is associated with brain malformations including polymicrogyria and nodular heterotopia, but the histopathology of these lesions is unknown. Here we present postmortem neuropathological findings from a 10 year-old girl with monosomy 1p36, who died of respiratory complications. The findings included micrencephaly, periventricular nodular heterotopia in occipitotemporal lobes, cortical dysgenesis resembling polymicrogyria in dorsolateral frontal lobes, hippocampal malrotation, callosal hypoplasia, superiorly rotated cerebellum with small vermis, and lumbosacral hydromyelia. The abnormal cortex exhibited “festooned” (undulating) supragranular layers, but no significant fusion of the molecular layer. Deletion mapping demonstrated single copy loss of a contiguous 1p36 terminal region encompassing many important neurodevelopmental genes, among them four HES genes implicated in regulating neural stem cell differentiation, and TP73, a monoallelically expressed gene. Our results suggest that brain and spinal malformations in monosomy 1p36 may be more extensive than previously recognized, and may depend on the parental origin of deleted genes. More broadly, our results suggest that specific genetic disorders may cause distinct forms of cortical dysgenesis.
PMCID: PMC3893467  PMID: 24252393
Periventricular nodular heterotopia; Hippocampal malrotation; Cortical dysgenesis; Malformations of cortical development; Hydromyelia; Mental retardation; Epilepsy
4.  Diencephalic–mesencephalic junction dysplasia: a novel recessive brain malformation 
Brain  2012;135(8):2416-2427.
We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic–mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic–mesencephalic junction with a characteristic ‘butterfly’-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, post-natal progressive microcephaly, axial hypotonia, spastic quadriparesis and seizures. Autistic features were noted in older cases. Talipes equinovarus, non-obstructive cardiomyopathy and persistent hyperplastic primary vitreous were additional findings in two families. One of the patients required shunting for hydrocephalus; however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term ‘diencephalic–mesencephalic junction dysplasia’ to characterize this autosomal recessive malformation.
PMCID: PMC3407423  PMID: 22822038
diencephalon; mesencephalon; mental retardation; brainstem malformation; brain wiring
5.  Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity 
Brain  2012;135(5):1370-1386.
Rhombencephalosynapsis is a midline brain malformation characterized by missing cerebellar vermis with apparent fusion of the cerebellar hemispheres. Rhombencephalosynapsis can be seen in isolation or together with other central nervous system and extra-central nervous system malformations. Gómez-López-Hernández syndrome combines rhombencephalosynapsis with parietal/temporal alopecia and sometimes trigeminal anaesthesia, towering skull shape and dysmorphic features. Rhombencephalosynapsis can also be seen in patients with features of vertebral anomalies, anal atresia, cardiovascular anomalies, trachea–oesophageal fistula, renal anomalies, limb defects (VACTERL) association. Based on a comprehensive evaluation of neuroimaging findings in 42 patients with rhombencephalosynapsis, we propose a spectrum of severity, ranging from mild (the partial absence of nodulus, anterior and posterior vermis), to moderate (the absence of posterior vermis with some anterior vermis and nodulus present), to severe (the absence of posterior and anterior vermis with some nodulus present), to complete (the absence of the entire vermis including nodulus). We demonstrate that the severity of rhombencephalosynapsis correlates with fusion of the tonsils, as well as midbrain abnormalities including aqueductal stenosis and midline fusion of the tectum. Rhombencephalosynapsis is also associated with multiple forebrain abnormalities including absent olfactory bulbs, dysgenesis of the corpus callosum, absent septum pellucidum and, in rare patients, atypical forms of holoprosencephaly. The frequent association between rhombencephalosynapsis and aqueductal stenosis prompted us to evaluate brain magnetic resonance images in other patients with aqueductal stenosis at our institution, and remarkably, we identified rhombencephalosynapsis in 9%. Strikingly, subjects with more severe rhombencephalosynapsis have more severely abnormal neurodevelopmental outcome, as do subjects with holoprosencephaly and patients with VACTERL features. In summary, our data provide improved diagnostic and prognostic information, and support disruption of dorsal–ventral patterning as a mechanism underlying rhombencephalosynapsis.
PMCID: PMC3338925  PMID: 22451504
rhombencephalosynapsis; Gómez-López-Hernández syndrome; aqueductal stenosis; holoprosencephaly; hydrocephalus; VACTERL
6.  A genetic and biologic classification of infantile spasms 
Pediatric Neurology  2011;45(6):355-367.
Infantile spasms are an age-dependent epilepsy that are highly associated with cognitive impairment, autism, and movement disorders. Previous classification systems have focused on a distinction between symptomatic and cryptogenic etiologies, and have not kept pace with the recent discoveries of mutations in genes in key pathways of central nervous system development in patients with infantile spasms. Children with certain genetic syndromes are much more likely to have infantile spasms, and we review the literature to propose a genetic classification of these disorders. Children with these genetic associations with infantile spasms also have phenotypes beyond epilepsy that may be explained by recent advances in the understanding of underlying biological mechanisms. We therefore also propose a biologic classification of the genes highly associated with infantile spasms, and articulate models for infantile spasms pathogenesis based on that data. The two best described pathways of pathogenesis are abnormalities in the gene regulatory network of GABAergic forebrain development, and abnormalities in molecules expressed at the synapse. We intend for these genetic and biologic classifications to be flexible, and hope that they will encourage much needed progress in syndrome recognition, clinical genetic testing, and ultimately the development of new therapies that target specific pathways of pathogenesis.
PMCID: PMC3397192  PMID: 22114996
Infantile spasms; developmental epilepsy; autism; movement disorders; gene regulatory networks
7.  Long Term Survival in TARP Syndrome and Confirmation of RBM10 as the Disease Causing Gene 
TARP syndrome, comprising Talipes equinovarus, Atrial septal defect, Robin sequence (micrognathia, glossoptosis, and cleft palate), and Persistence of the left superior vena cava, is an X-linked condition with pre- or postnatal lethality in affected males. Based on linkage studies and massively parallel sequencing of X-chromosome exons in two families, the disease causing gene was identified as RBM10. We identified a maternally inherited frameshift mutation in an unrelated patient, confirming RBM10 as the disease gene. This is the first reported individual with TARP syndrome who survived past early infancy, thus expanding the phenotypic spectrum of this disorder. In addition to the characteristic cleft palate, atrial septal defect and persistent superior vena cava, he had low-set and posteriorly angulated ears, upslanting palpebral fissures, cryptorchidism and structural brain abnormalities including partial agenesis of the corpus callosum, dysplastic enlarged caudate, and cerebellar hypoplasia with megacisterna magna. Preterm delivery, suspected pulmonary hypoplasia and pulmonary hypertension resulted in chronic lung disease. At the age of 3 7/12 years, he remained ventilator-dependent at night, and he was fed exclusively through a gastro-jejunal tube. Sensorineural hearing loss required a hearing aid. Optic atrophy and cortical visual impairment were noted. He was unable to sit independently, was non-communicative and he had severe intellectual disability. Atrial flutter required recurrent ablation of intra-atrial re-entry pathways. The mother's heterozygosity for the RBM10 mutation underscored the importance of accurate diagnosis and counseling for TARP syndrome.
PMCID: PMC3183328  PMID: 21910224
ASD; cryptorchidism; persistent left superior vena cava; Pierre-Robin sequence; RBM10; talipes equinovarus; X-linked
8.  The Microcephaly-Capillary Malformation Syndrome 
We report on three children from two families with a new pattern recognition malformation syndrome consisting of severe congenital microcephaly (MIC), intractable epilepsy including infantile spasms, and generalized capillary malformations that was first reported recently in this journal [Carter et al. (2011); Am J Med Genet A 155: 301–306]. Two of our reported patients are an affected brother and sister, suggesting this is an autosomal recessive severe congenital MIC syndrome.
PMCID: PMC3428374  PMID: 21815250
microcephaly with simplified gyri; capillary malformations; infantile spasms; optic nerve hypoplasia
9.  New Recessive Syndrome of Microcephaly, Cerebellar Hypoplasia, and Congenital Heart Conduction Defect 
We identified a two-branch consanguineous family in which four affected members (three females and one male) presenting with constitutive growth delay, severe psychomotor retardation, microcephaly, cerebellar hypoplasia, and second degree heart block. They also shared distinct facial features and similar appearance of their hands and feet. Childhood-onset insulin-dependent diabetes mellitus developed in one affected child around the age of 9 years. Molecular analysis excluded mutations in potentially related genes such as PTF1A, EIF2AK3, EOMES and WDR62. This condition appears to be unique of other known conditions, suggesting a unique clinical entity of autosomal recessive mode of inheritance.
PMCID: PMC3415795  PMID: 22002884
Microcephaly; insulin-dependent diabetes; cerebellar hypoplasia; mental retardation; heart block
10.  ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome 
Nature Genetics  2012;44(5):575-580.
Walker-Warburg syndrome (WWS) is clinically defined as congenital muscular dystrophy accompanied by a variety of brain and eye malformations. It represents the most severe clinical phenotype in a spectrum of alpha-dystroglycan posttranslational processing abnormalities, which share a defect in laminin binding glycan synthesis1. Although six WWS causing genes have been described, only half of all patients can currently be diagnosed genetically2. A cell fusion complementation assay using fibroblasts from undiagnosed WWS individuals identified five novel complementation groups. Further evaluation of one group by linkage analysis and targeted sequencing identified recessive mutations in the isoprenoid synthase domain containing (ISPD) gene. Confirmation of the pathogenicity of the identified ISPD mutations was demonstrated by complementation of fibroblasts with wild-type ISPD. Finally, we show that recessive mutations in ISPD abolish the initial step in laminin binding glycan synthesis by disrupting dystroglycan O-mannosylation. This establishes a novel mechanism for WWS pathophysiology.
PMCID: PMC3371168  PMID: 22522420
11.  Polymicrogyria Includes Fusion of the Molecular Layer and Decreased Neuronal Populations, But Normal Cortical Laminar Organization 
Malformations of cortical development are frequently identified in surgical resections for intractable epilepsy. Among the more frequently identified are cortical dysplasia, pachygyria and polymicrogyria. The pathogenesis of these common developmental anomalies remains uncertain. Polymicrogyria is particularly vexing because there are multiple described forms (2, 4 and 6 layer) that have been attributed to multiple etiologies (e.g. ischemic, genetic, infectious, and toxic). We reviewed the pathology in 19 cases and performed cortical laminar analysis in 10 of these cases. Our data indicate that a defining feature of polymicrogyria is fusion of the molecular layer and that most often there is a well-defined grey matter-white matter junction. Unexpectedly, the cortical lamina were normally positioned but there were reduced neuronal populations within these lamina, particularly in the subgranular layers. Based on these data, we propose that the categorization of polymicrogyria according to the number of lamina is artificial and should be abandoned and polymicrogyria should be defined according to the presence or absence of coexisting neuropathological features. Furthermore, our data indicate that polymicrogyria is not a cell migration disorder and rather that it should be considered a post-migration malformation of cortical development.
PMCID: PMC3113653  PMID: 21572338
Cell migration; Cerebral cortex; Cortical lamina; Malformation of cortical development; Polymicrogyria; Seizures
12.  A developmental and genetic classification for malformations of cortical development: update 2012 
Brain  2012;135(5):1348-1369.
Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical development that have been reported. These advances continue to modify our perception of these malformations. This review addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our knowledge of cerebral cortical development.
PMCID: PMC3338922  PMID: 22427329
cerebral cortex; malformation of cortical development; microcephaly; cortical dysplasia; polymicrogyria
13.  Chiari I malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with FOXP1 haploinsufficiency 
European Journal of Human Genetics  2010;18(11):1216-1220.
Human FOXP2 deficiency has been identified as a cause of hereditary developmental verbal dyspraxia. Another member of the same gene family, FOXP1, has expression patterns that overlap with FOXP2 in some areas of the brain, and FOXP1 and FOXP2 have the ability to form heterodimers. These findings suggest the possibility that FOXP1 may also contribute to proper speech development. However, no such role of FOXP1 has been established to date. Recently, a child was reported who presented with a 3p13-14.1 deletion of four genes, including FOXP1, and a constellation of deficits that included speech delay. In this study, we report the case of a patient with a single deletion of FOXP1. This patient presented with speech and motor developmental delays, a Chiari I malformation, and epileptiform discharges. The nature of the speech deficit is different from the primary oromotor verbal dyspraxia found in patients with FOXP2 deficiency. The patient's developmental deficits may support a role for FOXP1 in the development of verbal and motor skills.
PMCID: PMC2987472  PMID: 20571508
developmental delay; deletion; FOXP; speech deficit; Chiari I malformation
The pontocerebellar hypoplasias (PCH) are a group of early-onset, autosomal recessive disorders resulting in abnormal growth and function of the brainstem and cerebellum. PCH type 2 (PCH2) is characterized by respiratory and feeding difficulties at birth, extrapyramidal dyskinesia, severe developmental impairment, progressive microcephaly and frequent death in childhood. Neuropathologic findings include diffuse cerebral gliosis with white matter changes, hypoplastic pons with depletion of neurons in the pontine nuclei, hypoplastic cerebellar hemispheres due to short cerebellar folia with poor branching, segmental loss of dentate, inferior olivary, and ventral pontine nuclei, and near absence of transverse pontine fibers with preservation of long fiber tracts and spinal anterior horn cells. On brain imaging, the cerebellar hemispheres appear very flat, and are more severely involved than the vermis. Most patients with PCH2 have mutations in TSEN54, with occasional mutations found in TSEN34 or TSEN2, genes that encode subunits of tRNA splicing endonuclease. Although this is a congenital disorder of pontocerebellar dysgenesis with fetal onset of neurodegeneration and symptoms at birth, prenatal imaging is unreliable in diagnosing this disorder in utero. We report on IVF dizygous twins with detailed prenatal imaging that failed to reveal any cerebellar abnormalities. Direct sequence analysis of TSEN54 showed homozygosity for c.919G>T, the common founder mutation in most PCH2 patients, and both parents were heterozygous for this mutation. We found no evidence of cerebellar dysgenesis on prenatal ultrasounds, but MRI tractography showed absence of pontine crossing fibers, a unique feature that might be useful for prenatal diagnosis of this condition.
PMCID: PMC2931360  PMID: 20803644
cerebellar hypoplasia; neurogenetics; prenatal diagnosis; neuroimaging; autosomal recessive; TSEN54 mutation; tRNA-splicing endonuclease; microcephaly; dyskinesia
15.  Unbalanced der(5)t(5;20) translocation associated with Megalencephaly, perisylvian Polymicrogyria, Polydactyly and Hydrocephalus 
The combination of megalencephaly, perisylvian polymicrogyria, polydactyly and hydrocephalus (MPPH) is a rare syndrome of unknown cause. We observed two first cousins affected by an MPPH-like phenotype with a submicroscopic chromosome 5q35 deletion as a result of an unbalanced der(5)t(5;20)(q35.2;q13.3) translocation, including the NSD1 Sotos syndrome locus. We describe the phenotype and the deletion breakpoints of the two MPPH-like patients and compare these with five unrelated MPPH and Sotos patients harboring a 5q35 microdeletion. Mapping of the breakpoints in the two cousins was performed by MLPA, FISH, high density SNP-arrays and Q-PCR for the 5q35 deletion and 20q13 duplication. The 5q35 deletion area of the two cousins almost completely overlaps with earlier described patients with an atypical Sotos microdeletion, except for the DRD1 gene. The five unrelated MPPH patients neither showed submicroscopic chromosomal aberrations nor DRD1 mutations. We reviewed the brain MRI of 10 Sotos patients and did not detect polymicrogyria in any of them. In our two cousins, the MPPH-like phenotype is probably caused by the contribution of genes on both chromosome 5q35 and 20q13. Some patients with MPPH may harbor a submicroscopic chromosomal aberration and therefore high-resolution array analysis should be part of the diagnostic workup.
PMCID: PMC2908594  PMID: 20503325
Megalencephaly; Polymicrogyria; Polydactyly; Hydrocephalus; microdeletion; 5q35.2; 20q13.3
16.  Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients 
Brain  2010;133(5):1415-1427.
Polymicrogyria is one of the most common malformations of cortical development and is associated with a variety of clinical sequelae including epilepsy, intellectual disability, motor dysfunction and speech disturbance. It has heterogeneous clinical manifestations and imaging patterns, yet large cohort data defining the clinical and imaging spectrum and the relative frequencies of each subtype are lacking. The aims of this study were to determine the types and relative frequencies of different polymicrogyria patterns, define the spectrum of their clinical and imaging features and assess for clinical/imaging correlations. We studied the imaging features of 328 patients referred from six centres, with detailed clinical data available for 183 patients. The ascertainment base was wide, including referral from paediatricians, geneticists and neurologists. The main patterns of polymicrogyria were perisylvian (61%), generalized (13%), frontal (5%) and parasagittal parieto-occipital (3%), and in 11% there was associated periventricular grey matter heterotopia. Each of the above patterns was further divided into subtypes based on distinguishing imaging characteristics. The remaining 7% were comprised of a number of rare patterns, many not described previously. The most common clinical sequelae were epileptic seizures (78%), global developmental delay (70%), spasticity (51%) and microcephaly (50%). Many patients presented with neurological or developmental abnormalities prior to the onset of epilepsy. Patients with more extensive patterns of polymicrogyria presented at an earlier age and with more severe sequelae than those with restricted or unilateral forms. The median age at presentation for the entire cohort was 4 months with 38% presenting in either the antenatal or neonatal periods. There were no significant differences between the prevalence of epilepsy for each polymicrogyria pattern, however patients with generalized and bilateral forms had a lower age at seizure onset. There was significant skewing towards males with a ratio of 3:2. This study expands our understanding of the spectrum of clinical and imaging features of polymicrogyria. Progression from describing imaging patterns to defining anatomoclinical syndromes will improve the accuracy of prognostic counselling and will aid identification of the aetiologies of polymicrogyria, including genetic causes.
PMCID: PMC2859156  PMID: 20403963
polymicrogyria; cortical malformations; magnetic resonance; epileptology
17.  A developmental and genetic classification for midbrain-hindbrain malformations 
Brain  2009;132(12):3199-3230.
Advances in neuroimaging, developmental biology and molecular genetics have increased the understanding of developmental disorders affecting the midbrain and hindbrain, both as isolated anomalies and as part of larger malformation syndromes. However, the understanding of these malformations and their relationships with other malformations, within the central nervous system and in the rest of the body, remains limited. A new classification system is proposed, based wherever possible, upon embryology and genetics. Proposed categories include: (i) malformations secondary to early anteroposterior and dorsoventral patterning defects, or to misspecification of mid-hindbrain germinal zones; (ii) malformations associated with later generalized developmental disorders that significantly affect the brainstem and cerebellum (and have a pathogenesis that is at least partly understood); (iii) localized brain malformations that significantly affect the brain stem and cerebellum (pathogenesis partly or largely understood, includes local proliferation, cell specification, migration and axonal guidance); and (iv) combined hypoplasia and atrophy of putative prenatal onset degenerative disorders. Pertinent embryology is discussed and the classification is justified. This classification will prove useful for both physicians who diagnose and treat patients with these disorders and for clinical scientists who wish to understand better the perturbations of developmental processes that produce them. Importantly, both the classification and its framework remain flexible enough to be easily modified when new embryologic processes are described or new malformations discovered.
PMCID: PMC2792369  PMID: 19933510
cerebellum; brain stem; malformations; development
18.  Practice Parameter: Evaluation of the child with microcephaly (an evidence-based review) 
Neurology  2009;73(11):887-897.
To make evidence-based recommendations concerning the evaluation of the child with microcephaly.
Relevant literature was reviewed, abstracted, and classified. Recommendations were based on a 4-tiered scheme of evidence classification.
Microcephaly is an important neurologic sign but there is nonuniformity in its definition and evaluation. Microcephaly may result from any insult that disturbs early brain growth and can be seen in association with hundreds of genetic syndromes. Annually, approximately 25,000 infants in the United States will be diagnosed with microcephaly (head circumference <−2 SD). Few data are available to inform evidence-based recommendations regarding diagnostic testing. The yield of neuroimaging ranges from 43% to 80%. Genetic etiologies have been reported in 15.5% to 53.3%. The prevalence of metabolic disorders is unknown but is estimated to be 1%. Children with severe microcephaly (head circumference <−3 SD) are more likely (∼80%) to have imaging abnormalities and more severe developmental impairments than those with milder microcephaly (−2 to −3 SD; ∼40%). Coexistent conditions include epilepsy (∼40%), cerebral palsy (∼20%), mental retardation (∼50%), and ophthalmologic disorders (∼20% to ∼50%).
Neuroimaging may be considered useful in identifying structural causes in the evaluation of the child with microcephaly (Level C). Targeted and specific genetic testing may be considered in the evaluation of the child with microcephaly who has clinical or imaging abnormalities that suggest a specific diagnosis or who shows no evidence of an acquired or environmental etiology (Level C). Screening for coexistent conditions such as cerebral palsy, epilepsy, and sensory deficits may also be considered (Level C). Further study is needed regarding the yield of diagnostic testing in children with microcephaly.
= cerebral palsy;
= global developmental delay;
= head circumference;
= medically refractory epilepsy;
= Online Mendelian Inheritance in Man.
PMCID: PMC2744281  PMID: 19752457
19.  FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation 
Nature genetics  2009;41(9):1037-1042.
Dandy-Walker malformation (DWM), the most common human cerebellar malformation, has only one characterized associated locus1,2. Here we characterize a second DWM-linked locus on 6p25.3, showing that deletions or duplications encompassing FOXC1 are associated with cerebellar and posterior fossa malformations including cerebellar vermis hypoplasia (CVH), mega-cisterna magna (MCM) and DWM. Foxc1-null mice have embryonic abnormalities of the rhombic lip due to loss of mesenchyme-secreted signaling molecules with subsequent loss of Atoh1 expression in vermis. Foxc1 homozygous hypomorphs have CVH with medial fusion and foliation defects. Human FOXC1 heterozygous mutations are known to affect eye development, causing a spectrum of glaucoma-associated anomalies (Axenfeld-Rieger syndrome, ARS; MIM no. 601631). We report the first brain imaging data from humans with FOXC1 mutations and show that these individuals also have CVH. We conclude that alteration of FOXC1 function alone causes CVH and contributes to MCM and DWM. Our results highlight a previously unrecognized role for mesenchyme-neuroepithelium interactions in the mid-hindbrain during early embryogenesis.
PMCID: PMC2843139  PMID: 19668217
20.  TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins 
Human Molecular Genetics  2010;19(14):2817-2827.
We previously showed that mutations in LIS1 and DCX account for ∼85% of patients with the classic form of lissencephaly (LIS). Some rare forms of LIS are associated with a disproportionately small cerebellum, referred to as lissencephaly with cerebellar hypoplasia (LCH). Tubulin alpha1A (TUBA1A), encoding a critical structural subunit of microtubules, has recently been implicated in LIS. Here, we screen the largest cohort of unexplained LIS patients examined to date to determine: (i) the frequency of TUBA1A mutations in patients with lissencephaly, (ii) the spectrum of phenotypes associated with TUBA1A mutations and (iii) the functional consequences of different TUBA1A mutations on microtubule function. We identified novel and recurrent TUBA1A mutations in ∼1% of children with classic LIS and in ∼30% of children with LCH, making this the first major gene associated with the rare LCH phenotype. We also unexpectedly found a TUBA1A mutation in one child with agenesis of the corpus callosum and cerebellar hypoplasia without LIS. Thus, our data demonstrate a wider spectrum of phenotypes than previously reported and allow us to propose new recommendations for clinical testing. We also provide cellular and structural data suggesting that LIS-associated mutations of TUBA1A operate via diverse mechanisms that include disruption of binding sites for microtubule-associated proteins (MAPs).
PMCID: PMC2893812  PMID: 20466733
21.  Recessive Developmental Delay, Small Stature, Microcephaly and Brain Calcifications with Locus on Chromosome 2 
Two interrelated Omani families are described with eight children manifesting a genetic disorder with widespread brain calcifications. Brain imaging showed extensive scattered calcifications of basal ganglia and cortex, suggesting possible Aicardi-Goutiéres syndrome (AGS) or Coats’ Plus syndrome. However, the clinical features in the present families diverge substantially from these two conditions. Growth delay, mild developmental delay and poor school performance were present in all affected individuals, but progressive deterioration of neurological function was not apparent, nor were there significant cortical whitematter disease or retinopathy. Genome-wide linkage and fine-mapping analyses of the extended family members and affected individuals indicate a genetic locus for this disorder on Chromosome 2 with a LOD score of 6.17. The Chromosome 2 locus is novel and the clinical presentation displays features distinguishing the condition from either Coats’ or AGS, making this a new variant or possibly a new disorder of inherited brain calcification.
PMCID: PMC2800951  PMID: 19161147
brain calcifications; hydrocephalus; autosomal recessive inheritance; microcephaly; developmental delay; Aicardi-Goutiéres syndrome; Coats’ Plus syndrome
22.  Consistent chromosome abnormalities identify novel polymicrogyria loci in 1p36.3, 2p16.1-p23.1, 4q21.21-q22.1, 6q26-q27 and 21q2 
Polymicrogyria is a malformation of cortical development characterized by loss of the normal gyral pattern, which is replaced by many small and infolded gyri separated by shallow, partly fused sulci, and loss of middle cortical layers. The pathogenesis is unknown, yet emerging data supports the existence of several loci in the human genome. We report on the clinical and brain imaging features, and results of cytogenetic and molecular genetic studies in 29 patients with polymicrogyria associated with structural chromosome rearrangements. Our data map new polymicrogyria loci in chromosomes 1p36.3, 2p16.1-p23, 4q21.21-q22.1, 6q26-q27, and 21q21.3-q22.1, and possible loci in 1q44 and 18p as well. Most and possibly all of these loci demonstrate incomplete penetrance and variable expressivity. We anticipate that these data will serve as the basis for ongoing efforts to identify the causal genes located in these regions.
PMCID: PMC2801020  PMID: 18536050
chromosome 1p36; chromosome 1q4; chromosome 2p; chromosome 4q2; chromosome 6q2; chromosome 18p; chromosome 21q2; deletion; duplication; polymicrogyria
23.  A novel mechanistic spectrum underlies glaucoma-associated chromosome 6p25 copy number variation 
Human Molecular Genetics  2008;17(22):3446-3458.
The factors that mediate chromosomal rearrangement remain incompletely defined. Among regions prone to structural variant formation, chromosome 6p25 is one of the few in which disease-associated segmental duplications and segmental deletions have been identified, primarily through gene dosage attributable ocular phenotypes. Using array comparative genome hybridization, we studied ten 6p25 duplication and deletion pedigrees and amplified junction fragments from each. Analysis of the breakpoint architecture revealed that all the rearrangements were non-recurrent, and in contrast to most previous examples the majority of the segmental duplications and deletions utilized coupled homologous and non-homologous recombination mechanisms. One junction fragment exhibited an unprecedented 367 bp insert derived from tandemly arranged breakpoint elements. While this accorded with a recently described replication-based mechanism, it differed from the previous example in being unassociated with template switching, and occurring in a segmental deletion. These results extend the mechanisms involved in structural variant formation, provide strong evidence that a spectrum of recombination, DNA repair and replication underlie 6p25 rearrangements, and have implications for genesis of copy number variations in other genomic regions. These findings highlight the benefits of undertaking the extensive studies necessary to characterize structural variants at the base pair level.
PMCID: PMC2572693  PMID: 18694899
24.  Microcephaly, sensorineural deafness and Currarino triad with duplication–deletion of distal 7q 
European Journal of Pediatrics  2009;169(4):475-481.
Currarino syndrome (CS) is a peculiar form of caudal regression syndrome [also known as autosomal dominant sacral agenesis (OMIM no. 176450)] characterised by (1) partial absence of the sacrum with intact first sacral vertebra, (2) a pre-sacral mass and (3) anorectal anomalies (Currarino triad). We studied a 3-year-old girl with Currarino triad who had additional systemic features and performed array comparative genomic hybridisation to look for chromosomal abnormalities. This girl had the typical spectrum of anomalies of the CS including (a) partial sacral agenesis (hemisacrum with remnants of only sacral S1–S2 vertebrae and a residual S3 vertebral body) associated with complete coccygeal agenesis, (b) pre-intrasacral dermoid, (c) intra-dural lipoma, (d) ectopic anus and (e) tethered cord. She had, in addition, pre- and post-natal growth impairment (<3rd percentile), severe microcephaly (<−3 SD) with normal gyration pattern and lack of cortical thickening associated with a hypoplastic inferior vermis, facial dysmorphism, sensorineural deafness and decreased serum levels of IGF-1. A de novo 10.3-Mb duplication of 7q34–q35 and an 8.8-Mb deletion on 7q36 were identified in this patient. The Homeobox HLXB9 (CS) gene is contained within the deletion accounting for the CS phenotype including microcephaly. The spectrums of associated abnormalities in the IGF-1 deficiency growth retardation with sensorineural deafness and mental retardation syndrome (OMIM no. 608747) are discussed. To the best of our knowledge, this is the first reported case of a patient with distal 7q chromosomal imbalance and features of CS triad (including microcephaly) and the first documented case of a patient with normal gyration pattern microcephaly. The spectrum of associated anomalies in this newly recognised phenotype complex consists of growth failure, typical facial anomalies with additional (previously unreported) nervous system abnormalities (e.g. sensorineural deafness) and somatomedin C deficiency.
PMCID: PMC2820683  PMID: 19838731
Caudal regression syndrome; Absence of sacrum; Pre-sacral mass; Anorectal anomalies; Microcephaly; Sensorineural deafness; IGF-1 deficiency
25.  A Novel SIX3 Mutation Segregates With Holoprosencephaly in a Large Family 
Holoprosencephaly is the most common structural malformation of the forebrain in humans and has a complex etiology including chromosomal aberrations, single gene mutations and environmental components. Here we present the pertinent clinical findings among members of an unusually large kindred ascertained over 15 years ago following the evaluation and subsequent genetic work-up of a female infant with congenital anomalies. A genome-wide scan and linkage analysis showed only suggestive evidence of linkage to markers on chromosome 2 among the most likely of several pedigree interpretations. We now report that a novel missense mutation in the SIX3 holoprosencephaly gene is the likely cause in this family. Molecular genetic analysis and/or clinical characterization now show that at least 15 members of this family are presumed SIX3 mutation gene carriers, with clinical manifestations ranging from phenotypically normal adults (non-penetrance) to alobar holoprosencephaly incompatible with postnatal life. This particular family represents a seminal example of the variable manifestations of gene mutations in holoprosencephaly and difficulties encountered in their elucidation.
PMCID: PMC2737713  PMID: 19353631
holoprosencephaly; HPE; SIX3

Results 1-25 (42)