PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Genetic and environmental correlates of topiramate-induced cognitive impairment 
Epilepsia  2011;53(1):e5-e8.
Topiramate is an antiepileptic drug that has marked, treatment-limiting side effects on specific aspects of cognitive performance in both patients and healthy volunteers. As these severe side-effects occur only in certain individuals, identifying genetic or environmental variables that influence cognitive response would be of great utility in determining whether to administer this drug to a patient. We gave an acute 100 mg oral dose of topiramate to 158 healthy volunteers and measured how the drug changed their performance on a diverse battery of cognitive tests. We found a wide range of responses to topiramate and demonstrated that not all tests in the battery were equally affected. There was no correlation between the effect of topiramate and either education level or baseline cognitive performance. Interestingly, there was up to 55-fold variation in the topiramate plasma levels of the participants. Our genome-wide association study (GWAS) of cognitive response did not reveal any genome-wide significant associations; the study was powered to find variants explaining at least 25% of the variation in cognitive response. Combining the results of this GWAS with a retrospective study of cognitive complaints in 290 epilepsy patients who received topiramate as part of their treatment also did not result in a significant association. Our results support the need for additional genetic studies of topiramate that utilize larger sample sizes.
doi:10.1111/j.1528-1167.2011.03322.x
PMCID: PMC3253145  PMID: 22091778
topiramate; cognition; genome-wide association study; genetics; taste change
2.  Atypical face shape and genomic structural variants in epilepsy 
Brain  2012;135(10):3101-3114.
Many pathogenic structural variants of the human genome are known to cause facial dysmorphism. During the past decade, pathogenic structural variants have also been found to be an important class of genetic risk factor for epilepsy. In other fields, face shape has been assessed objectively using 3D stereophotogrammetry and dense surface models. We hypothesized that computer-based analysis of 3D face images would detect subtle facial abnormality in people with epilepsy who carry pathogenic structural variants as determined by chromosome microarray. In 118 children and adults attending three European epilepsy clinics, we used an objective measure called Face Shape Difference to show that those with pathogenic structural variants have a significantly more atypical face shape than those without such variants. This is true when analysing the whole face, or the periorbital region or the perinasal region alone. We then tested the predictive accuracy of our measure in a second group of 63 patients. Using a minimum threshold to detect face shape abnormalities with pathogenic structural variants, we found high sensitivity (4/5, 80% for whole face; 3/5, 60% for periorbital and perinasal regions) and specificity (45/58, 78% for whole face and perinasal regions; 40/58, 69% for periorbital region). We show that the results do not seem to be affected by facial injury, facial expression, intellectual disability, drug history or demographic differences. Finally, we use bioinformatics tools to explore relationships between facial shape and gene expression within the developing forebrain. Stereophotogrammetry and dense surface models are powerful, objective, non-contact methods of detecting relevant face shape abnormalities. We demonstrate that they are useful in identifying atypical face shape in adults or children with structural variants, and they may give insights into the molecular genetics of facial development.
doi:10.1093/brain/aws232
PMCID: PMC3470710  PMID: 22975390
epilepsy; dysmorphism; structural variants; genomics; dense surface models
3.  Genome-wide mapping for clinically relevant predictors of lamotrigine- and phenytoin-induced hypersensitivity reactions 
Pharmacogenomics  2012;13(4):399-405.
Aims
An association between carbamazepine-induced hypersensitivity and HLA-A*3101 has been reported in populations of both European and Asian descent. We aimed to investigate HLA-A*3101 and other common variants across the genome as markers for cutaneous adverse drug reactions (cADRs) attributed to lamotrigine and phenytoin.
Materials & methods
We recruited patients with lamotrigine-induced cADRs (n = 46) and patients with phenytoin-cADRs (n = 44) and the 1958 British birth cohort was used as a control (n = 1296). HLA-A*3101 was imputed from genome-wide association study data. We applied genome-wide association to study lamotrigine- and phenytoin-induced cADR, and total cADR cases combined.
Results
Neither HLA-A*3101 nor any other genetic marker significantly predicted lamotrigine- or phenytoin-induced cADRs.
Conclusion
HLA-A*3101 does not appear to be a predictor for lamotrigine- and phenytoin-induced cADRs in Europeans. Our genome-wide association study results do not support the existence of a clinically relevant common variant for the development of lamotrigine- or phenytoin-induced cADRs. As a predictive marker, HLA-A*3101 appears to be specific for carbamazepine-induced cADRs.
doi:10.2217/pgs.11.165
PMCID: PMC3428903  PMID: 22379998
epilepsy; GWAS; HLA-A*3101; hypersensitivity; lamotrigine; phenytoin
4.  HLA-A★3101 and Carbamazepine-Induced Hypersensitivity Reactions in Europeans 
The New England journal of medicine  2011;364(12):1134-1143.
BACKGROUND
Carbamazepine causes various forms of hypersensitivity reactions, ranging from maculopapular exanthema to severe blistering reactions. The HLA-B★1502 allele has been shown to be strongly correlated with carbamazepine-induced Stevens–Johnson syndrome and toxic epidermal necrolysis (SJS–TEN) in the Han Chinese and other Asian populations but not in European populations.
METHODS
We performed a genomewide association study of samples obtained from 22 subjects with carbamazepine-induced hypersensitivity syndrome, 43 subjects with carbamazepine-induced maculopapular exanthema, and 3987 control subjects, all of European descent. We tested for an association between disease and HLA alleles through proxy single-nucleotide polymorphisms and imputation, confirming associations by high-resolution sequence-based HLA typing. We replicated the associations in samples from 145 subjects with carbamazepine-induced hypersensitivity reactions.
RESULTS
The HLA-A★3101 allele, which has a prevalence of 2 to 5% in Northern European populations, was significantly associated with the hypersensitivity syndrome (P = 3.5×10−8). An independent genomewide association study of samples from subjects with maculopapular exanthema also showed an association with the HLA-A★3101 allele (P = 1.1×10−6). Follow-up genotyping confirmed the variant as a risk factor for the hypersensitivity syndrome (odds ratio, 12.41; 95% confidence interval [CI], 1.27 to 121.03), maculopapular exanthema (odds ratio, 8.33; 95% CI, 3.59 to 19.36), and SJS–TEN (odds ratio, 25.93; 95% CI, 4.93 to 116.18).
CONCLUSIONS
The presence of the HLA-A★3101 allele was associated with carbamazepine-induced hypersensitivity reactions among subjects of Northern European ancestry. The presence of the allele increased the risk from 5.0% to 26.0%, whereas its absence reduced the risk from 5.0% to 3.8%. (Funded by the U.K. Department of Health and others.)
doi:10.1056/NEJMoa1013297
PMCID: PMC3113609  PMID: 21428769
5.  Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study 
Brain  2010;133(7):2136-2147.
Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies.
doi:10.1093/brain/awq130
PMCID: PMC2892941  PMID: 20522523
partial epilepsy; genome-wide association; genetics; common variants
6.  Genomic microdeletions associated with epilepsy: Not a contraindication to resective surgery 
Epilepsia  2011;52(8):1388-1392.
Purpose
Several recent reports of genomic microdeletions in epilepsy will generate further research; discovery of more microdeletions and other important classes of variants may follow. Detection of such genetic abnormalities in patients being evaluated for surgical treatment might raise concern that a genetic defect, possibly widely expressed in the brain, will affect surgical outcome.
Methods
A reevaluation was undertaken of clinical presurgical data, histopathology of surgical specimen, and postsurgical outcome in patients with mesial temporal lobe epilepsy (MTLE) who have had surgical treatment for their drug-resistant seizures, and who have been found to have particular genomic microdeletions.
Key Findings
Three thousand eight hundred twelve patients with epilepsy were genotyped and had a genome-wide screen to identify copy number variation. Ten patients with MTLE, who had resective epilepsy surgery, were found to have 16p13.11 microdeletions or other microdeletions >1 Mb. On histopathology, eight had classical hippocampal sclerosis (HS), one had nonspecific findings, and one had a hamartoma. Median postsurgical follow-up time was 48 months (range 10–156 months). All patients with HS were seizure-free after surgery, International League Against Epilepsy (ILAE) outcome class 1, at last follow-up; the patient with nonspecific pathology had recurrence of infrequent seizures after 7 years of seizure freedom. The patient with a hamartoma never became seizure-free.
Significance
Large microdeletions can be found in patients with “typical” MTLE. In this small series, patients with MTLE who meet criteria for resective surgery and harbor large microdeletions, at least those we have detected, can have a good postsurgical outcome. Our findings add to the spectrum of causal heterogeneity of MTLE + HS.
doi:10.1111/j.1528-1167.2011.03087.x
PMCID: PMC3399084  PMID: 21635232
Epilepsy surgery; Hippocampal sclerosis; Temporal lobectomy; Deletions

Results 1-6 (6)