PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Polymorphisms in the GluR2 gene are not associated with amyotrophic lateral sclerosis 
Neurobiology of aging  2010;33(2):418-420.
Excitotoxicity is thought to play a pathogenic role in amyotrophic lateral sclerosis (ALS). Excitotoxic motor neuron death is mediated through the Ca2+-permeable AMPA-type of glutamate receptors and Ca2+ permeability is determined by the GluR2 subunit. We investigated whether polymorphisms or mutations in the GluR2 gene (GRIA2) predispose patients to ALS. Upon sequencing 24 patients and 24 controls no non-synonymous coding variants were observed but 24 polymorphisms were identified, 9 of which were novel. In a screening set of 310 Belgian ALS cases and 794 healthy controls and a replication set of 3,157 cases and 5,397 controls from 6 additional populations no association with susceptibility, age at onset or disease duration was observed. We conclude that polymorphisms in the GluR2 gene (GRIA2) are not a major contributory factor in the pathogenesis of ALS.
doi:10.1016/j.neurobiolaging.2010.03.007
PMCID: PMC2949683  PMID: 20409611
Amyotrophic lateral sclerosis; excitotoxicity; GluR2; motor neuron
2.  Mutant HSPB8 causes motor neuron-specific neurite degeneration 
Human Molecular Genetics  2010;19(16):3254-3265.
Missense mutations (K141N and K141E) in the α-crystallin domain of the small heat shock protein HSPB8 (HSP22) cause distal hereditary motor neuropathy (distal HMN) or Charcot-Marie-Tooth neuropathy type 2L (CMT2L). The mechanism through which mutant HSPB8 leads to a specific motor neuron disease phenotype is currently unknown. To address this question, we compared the effect of mutant HSPB8 in primary neuronal and glial cell cultures. In motor neurons, expression of both HSPB8 K141N and K141E mutations clearly resulted in neurite degeneration, as manifested by a reduction in number of neurites per cell, as well as in a reduction in average length of the neurites. Furthermore, expression of the K141E (and to a lesser extent, K141N) mutation also induced spheroids in the neurites. We did not detect any signs of apoptosis in motor neurons, showing that mutant HSPB8 resulted in neurite degeneration without inducing neuronal death. While overt in motor neurons, these phenotypes were only very mildly present in sensory neurons and completely absent in cortical neurons. Also glial cells did not show an altered phenotype upon expression of mutant HSPB8. These findings show that despite the ubiquitous presence of HSPB8, only motor neurons appear to be affected by the K141N and K141E mutations which explain the predominant motor neuron phenotype in distal HMN and CMT2L.
doi:10.1093/hmg/ddq234
PMCID: PMC2908473  PMID: 20538880
3.  A Role of SCN9A in Human Epilepsies, As a Cause of Febrile Seizures and As a Potential Modifier of Dravet Syndrome 
PLoS Genetics  2009;5(9):e1000649.
A follow-up study of a large Utah family with significant linkage to chromosome 2q24 led us to identify a new febrile seizure (FS) gene, SCN9A encoding Nav1.7. In 21 affected members, we uncovered a potential mutation in a highly conserved amino acid, p.N641Y, in the large cytoplasmic loop between transmembrane domains I and II that was absent from 586 ethnically matched population control chromosomes. To establish a functional role for this mutation in seizure susceptibility, we introduced the orthologous mutation into the murine Scn9a ortholog using targeted homologous recombination. Compared to wild-type mice, homozygous Scn9aN641Y/N641Y knockin mice exhibit significantly reduced thresholds to electrically induced clonic and tonic-clonic seizures, and increased corneal kindling acquisition rates. Together, these data strongly support the SCN9A p.N641Y mutation as disease-causing in this family. To confirm the role of SCN9A in FS, we analyzed a collection of 92 unrelated FS patients and identified additional highly conserved Nav1.7 missense variants in 5% of the patients. After one of these children with FS later developed Dravet syndrome (severe myoclonic epilepsy of infancy), we sequenced the SCN1A gene, a gene known to be associated with Dravet syndrome, and identified a heterozygous frameshift mutation. Subsequent analysis of 109 Dravet syndrome patients yielded nine Nav1.7 missense variants (8% of the patients), all in highly conserved amino acids. Six of these Dravet syndrome patients with SCN9A missense variants also harbored either missense or splice site SCN1A mutations and three had no SCN1A mutations. This study provides evidence for a role of SCN9A in human epilepsies, both as a cause of FS and as a partner with SCN1A mutations.
Author Summary
Febrile seizures are the most common seizure disorder of early childhood, and exhibit a prevalence of 2%–5% in European and North American children. While the genetic basis of febrile seizures is well-documented, efforts to uncover these genes have yielded only a few genes in a small proportion of cases. In a genomic region on human chromosome 2 known to harbor the febrile seizure SCN1A sodium channel gene, we now report a disease-causing mutation in the adjacent gene, SCN9A (Nav1.7), in a large family with febrile seizures. We introduced the family mutation (N641Y) into the orthologous mouse gene to create a knockin mouse model, and tested seizure susceptibility in these mice. Compared to wild-type mice, our Scn9a knockin mice have a significantly lower threshold to electrically induced seizures and experience seizures at a significantly faster rate with repeated subthreshold stimulation. We also report novel missense SCN9A mutations in unrelated febrile seizure patients. Furthermore, we show that a subset of patients with the catastrophic early-onset Dravet syndrome who commonly have mutations in SCN1A also harbor mutations in SCN9A. This finding is important as it demonstrates for the first time mutational evidence for a modifying digenic mechanism of human epilepsy. For infants with Dravet syndrome, a genetic diagnosis will be of immediate benefit to guide therapeutics away from the sodium channel blocking class of anticonvulsant drugs that exacerbate seizures but are often the first administered.
doi:10.1371/journal.pgen.1000649
PMCID: PMC2730533  PMID: 19763161
4.  Genes for hereditary sensory and autonomic neuropathies: a genotype–phenotype correlation 
Brain  2009;132(10):2699-2711.
Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype–phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis.
doi:10.1093/brain/awp198
PMCID: PMC2759337  PMID: 19651702
HSAN; SPTLC1; RAB7; WNK1/HSN2; NTRK1
5.  Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12 
Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative conditions. They are characterized by progressive spastic paralysis of the legs as a result of selective, length-dependent degeneration of the axons of the corticospinal tract. Mutations in 3 genes encoding proteins that work together to shape the ER into sheets and tubules — receptor accessory protein 1 (REEP1), atlastin-1 (ATL1), and spastin (SPAST) — have been found to underlie many cases of HSP in Northern Europe and North America. Applying Sanger and exome sequencing, we have now identified 3 mutations in reticulon 2 (RTN2), which encodes a member of the reticulon family of prototypic ER-shaping proteins, in families with spastic paraplegia 12 (SPG12). These autosomal dominant mutations included a complete deletion of RTN2 and a frameshift mutation predicted to produce a highly truncated protein. Wild-type reticulon 2, but not the truncated protein potentially encoded by the frameshift allele, localized to the ER. RTN2 interacted with spastin, and this interaction required a hydrophobic region in spastin that is involved in ER localization and that is predicted to form a curvature-inducing/sensing hairpin loop domain. Our results directly implicate a reticulon protein in axonopathy, show that this protein participates in a network of interactions among HSP proteins involved in ER shaping, and further support the hypothesis that abnormal ER morphogenesis is a pathogenic mechanism in HSP.
doi:10.1172/JCI60560
PMCID: PMC3266795  PMID: 22232211
6.  Genetic spectrum of hereditary neuropathies with onset in the first year of life 
Brain  2011;134(9):2664-2676.
Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine–Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot–Marie–Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot–Marie–Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot–Marie–Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset.
doi:10.1093/brain/awr184
PMCID: PMC3170533  PMID: 21840889
early onset hereditary neuropathies; congenital hypomyelinating neuropathy; Dejerine–Sottas neuropathy; genotype–phenotype correlations; Charcot–Marie–Tooth disease
7.  Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies 
Brain  2009;133(1):23-32.
Idiopathic generalized epilepsies account for 30% of all epilepsies. Despite a predominant genetic aetiology, the genetic factors predisposing to idiopathic generalized epilepsies remain elusive. Studies of structural genomic variations have revealed a significant excess of recurrent microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 in various neuropsychiatric disorders including autism, intellectual disability and schizophrenia. Microdeletions at 15q13.3 have recently been shown to constitute a strong genetic risk factor for common idiopathic generalized epilepsy syndromes, implicating that other recurrent microdeletions may also be involved in epileptogenesis. This study aimed to investigate the impact of five microdeletions at the genomic hotspot regions 1q21.1, 15q11.2, 16p11.2, 16p13.11 and 22q11.2 on the genetic risk to common idiopathic generalized epilepsy syndromes. The candidate microdeletions were assessed by high-density single nucleotide polymorphism arrays in 1234 patients with idiopathic generalized epilepsy from North-western Europe and 3022 controls from the German population. Microdeletions were validated by quantitative polymerase chain reaction and their breakpoints refined by array comparative genomic hybridization. In total, 22 patients with idiopathic generalized epilepsy (1.8%) carried one of the five novel microdeletions compared with nine controls (0.3%) (odds ratio = 6.1; 95% confidence interval 2.8–13.2; χ2 = 26.7; 1 degree of freedom; P = 2.4 × 10−7). Microdeletions were observed at 1q21.1 [Idiopathic generalized epilepsy (IGE)/control: 1/1], 15q11.2 (IGE/control: 12/6), 16p11.2 IGE/control: 1/0, 16p13.11 (IGE/control: 6/2) and 22q11.2 (IGE/control: 2/0). Significant associations with IGEs were found for the microdeletions at 15q11.2 (odds ratio = 4.9; 95% confidence interval 1.8–13.2; P = 4.2 × 10−4) and 16p13.11 (odds ratio = 7.4; 95% confidence interval 1.3–74.7; P = 0.009). Including nine patients with idiopathic generalized epilepsy in this cohort with known 15q13.3 microdeletions (IGE/control: 9/0), parental transmission could be examined in 14 families. While 10 microdeletions were inherited (seven maternal and three paternal transmissions), four microdeletions occurred de novo at 15q13.3 (n = 1), 16p13.11 (n = 2) and 22q11.2 (n = 1). Eight of the transmitting parents were clinically unaffected, suggesting that the microdeletion itself is not sufficient to cause the epilepsy phenotype. Although the microdeletions investigated are individually rare (<1%) in patients with idiopathic generalized epilepsy, they collectively seem to account for a significant fraction of the genetic variance in common idiopathic generalized epilepsy syndromes. The present results indicate an involvement of microdeletions at 15q11.2 and 16p13.11 in epileptogenesis and strengthen the evidence that recurrent microdeletions at 15q11.2, 15q13.3 and 16p13.11 confer a pleiotropic susceptibility effect to a broad range of neuropsychiatric disorders.
doi:10.1093/brain/awp262
PMCID: PMC2801323  PMID: 19843651
idiopathic generalized epilepsy; microdeletions; association; genetics
8.  Phenotypic spectrum of dynamin 2 mutations in Charcot-Marie-Tooth neuropathy 
Brain  2009;132(7):1741-1752.
Dominant intermediate Charcot-Marie-Tooth neuropathy type B is caused by mutations in dynamin 2. We studied the clinical, haematological, electrophysiological and sural nerve biopsy findings in 34 patients belonging to six unrelated dominant intermediate Charcot-Marie-Tooth neuropathy type B families in whom a dynamin 2 mutation had been identified: Gly358Arg (Spain); Asp551_Glu553del; Lys550fs (North America); Lys558del (Belgium); Lys558Glu (Australia, the Netherlands) and Thr855_Ile856del (Belgium). The Gly358Arg and Thr855_Ile856del mutations were novel, and in contrast to the other Charcot-Marie-Tooth-related mutations in dynamin 2, which are all located in the pleckstrin homology domain, they were situated in the middle domain and proline-rich domain of dynamin 2, respectively. We report the first disease-causing mutation in the proline-rich domain of dynamin 2. Patients with a dynamin 2 mutation presented with a classical Charcot-Marie-Tooth phenotype, which was mild to moderately severe since only 3% of the patients were wheelchair-bound. The mean age at onset was 16 years with a large variability ranging from 2 to 50 years. Interestingly, in the Australian and Belgian families, which carry two different mutations affecting the same amino acid (Lys558), Charcot-Marie-Tooth cosegregated with neutropaenia. In addition, early onset cataracts were observed in one of the Charcot-Marie-Tooth families. Our electrophysiological data indicate intermediate or axonal motor median nerve conduction velocities (NCV) ranging from 26 m/s to normal values in four families, and less pronounced reduction of motor median NCV (41–46 m/s) with normal amplitudes in two families. Sural nerve biopsy in a Dutch patient with Lys558Glu mutation showed diffuse loss of large myelinated fibres, presence of many clusters of regenerating myelinated axons and fibres with focal myelin thickenings—findings very similar to those previously reported in the Australian family. We conclude that dynamin 2 mutations should be screened in the autosomal dominant Charcot-Marie-Tooth neuropathy families with intermediate or axonal NCV, and in patients with a classical mild to moderately severe Charcot-Marie-Tooth phenotype, especially when Charcot-Marie-Tooth is associated with neutropaenia or cataracts.
doi:10.1093/brain/awp115
PMCID: PMC2724916  PMID: 19502294
intermediate CMT; dynamin 2; neutropaenia; hereditary neuropathy; cataracts
9.  REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31 
Brain : a journal of neurology  2008;131(Pt 4):1078-1086.
Mutations in the receptor expression enhancing protein 1 (REEP1) have recently been reported to cause autosomal dominant hereditary spastic paraplegia (HSP) type SPG31. In a large collaborative effort, we screened a sample of 535 unrelated HSP patients for REEP1 mutations and copy number variations. We identified 13 novel and 2 known REEP1 mutations in 16 familial and sporadic patients by direct sequencing analysis. Twelve out of 16 mutations were small insertions, deletions or splice site mutations. These changes would result in shifts of the open-reading-frame followed by premature termination of translation and haploinsufficiency. Interestingly, we identified two disease associated variations in the 3′-UTR of REEP1 that fell into highly conserved micro RNA binding sites. Copy number variation analysis in a subset of 133 HSP index patients revealed a large duplication of REEP1 that involved exons 2–7 in an Irish family. Clinically most SPG31 patients present with a pure spastic paraplegia; rare complicating features were restricted to symptoms or signs of peripheral nerve involvement. Interestingly, the distribution of age at onset suggested a bimodal pattern with the appearance of initial symptoms of disease either before the age of 20 years or after the age of 30 years. The overall mutation rate in our clinically heterogeneous sample was 3.0%; however, in the sub-sample of pure HSP REEP1 mutations accounted for 8.2% of all patients. These results firmly establish REEP1 as a relatively frequent autosomal dominant HSP gene for which genetic testing is warranted. We also establish haploinsufficiency as the main molecular genetic mechanism in SPG31, which should initiate and guide functional studies on REEP1 with a focus on loss-of-function mechanisms. Our results should be valid as a reference for mutation frequency, spectrum of REEP1 mutations, and clinical phenotypes associated with SPG31.
doi:10.1093/brain/awn026
PMCID: PMC2841798  PMID: 18321925
hereditary spastic paraplegia; SPG31; REEP1; haploinsufficiency; micro RNA
10.  Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1 
Brain  2008;131(7):1831-1844.
Paroxysmal exercise-induced dyskinesia (PED) can occur in isolation or in association with epilepsy, but the genetic causes and pathophysiological mechanisms are still poorly understood. We performed a clinical evaluation and genetic analysis in a five-generation family with co-occurrence of PED and epilepsy (n = 39), suggesting that this combination represents a clinical entity. Based on a whole genome linkage analysis we screened SLC2A1, encoding the glucose transporter of the blood-brain-barrier, GLUT1 and identified heterozygous missense and frameshift mutations segregating in this and three other nuclear families with a similar phenotype. PED was characterized by choreoathetosis, dystonia or both, affecting mainly the legs. Predominant epileptic seizure types were primary generalized. A median CSF/blood glucose ratio of 0.52 (normal >0.60) in the patients and a reduced glucose uptake by mutated transporters compared with the wild-type as determined in Xenopus oocytes confirmed a pathogenic role of these mutations. Functional imaging studies implicated alterations in glucose metabolism in the corticostriate pathways in the pathophysiology of PED and in the frontal lobe cortex in the pathophysiology of epileptic seizures. Three patients were successfully treated with a ketogenic diet. In conclusion, co-occurring PED and epilepsy can be due to autosomal dominant heterozygous SLC2A1 mutations, expanding the phenotypic spectrum associated with GLUT1 deficiency and providing a potential new treatment option for this clinical syndrome.
doi:10.1093/brain/awn113
PMCID: PMC2442425  PMID: 18577546
GLUT1; paroxysmal dyskinesia; exercise-induced; GLUT1 deficiency syndrome; ketogenic diet

Results 1-10 (10)