Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Transgenic inhibition of astroglial NF-κB leads to increased axonal sparing and sprouting following spinal cord injury 
Journal of neurochemistry  2009;110(2):765-778.
We previously showed that NF-κB inactivation in astrocytes leads to improved functional recovery following spinal cord injury (SCI). This correlated with reduced expression of pro-inflammatory mediators and chondroitin sulphate proteoglycans, and increased white matter preservation. Hence we hypothesized that inactivation of astrocytic NF-κB would create a more permissive environment for axonal sprouting and regeneration. We induced both contusive and complete transection SCI in GFAP-IκBα-dn and WT mice and performed retrograde (fluorogold) and anterograde (biotinylated dextran amine) tracing eight weeks after injury. Following contusive SCI, more fluorogold-labeled cells were found in motor cortex, reticular formation, and raphe nuclei of transgenic mice. Spared and sprouting biotinylated dextran amine-positive corticospinal axons were found caudal to the lesion in GFAP-IκBα-dn mice. Higher numbers of fluorogold-labeled neurons were detected immediately rostral to the lesion in GFAP-IκBα-dn mice, accompanied by increased expression of synaptic and axonal growth-associated molecules. After transection, however, no fluorogold-labeled neurons or biotinylated dextran amine-filled axons were found rostral and caudal to the lesion, respectively, in either genotype. These data demonstrated that inhibiting astroglial NF-κB resulted in a growth-supporting terrain promoting sparing and sprouting, rather than regeneration, of supraspinal and propriospinal circuitries essential for locomotion, hence contributing to the improved functional recovery observed after SCI in GFAP-IκBα-dn mice.
PMCID: PMC4090052  PMID: 19522780
transgenic mice; astrocytes; retrograde tracing; anterograde tracing; GAP-43; neuroprotection
2.  NIBP, a Novel NIK and IKKβ-binding Protein That Enhances NF-κB Activation* 
The Journal of biological chemistry  2005;280(32):29233-29241.
The transcription factor NF-κB plays an important role in both physiological and pathological events in the central nervous system. Nevertheless, the mechanisms of NF-κB-mediated regulation of gene expression, and the signaling molecules participating in the NF-κB pathway in the central nervous system are, to date, poorly understood. To identify such molecules, we conducted a yeast two-hybrid screen of a human brain cDNA library using NIK as bait. As a result, we identified a novel NIK and IKKβ binding protein designated NIBP that is mainly expressed in brain, muscle, heart, and kidney. Interestingly, low levels of expression were detected in immune tissues such as spleen, thymus, and peripheral blood leukocytes, where NF-κB is known to modulate immune function. We demonstrated by immunohistochemistry that NIBP expression in the brain is localized to neurons. NIBP physically interacts with NIK IKKβ, but not IKKα or IKKγ. NIBP overexpression potentiates tumor necrosis factor-α-induced NF-κB activation through increased phosphorylation of the IKK complex and its downstream IκBα and p65 substrates. Finally, knockdown of NIBP expression by small interfering RNA reduces tumor necrosis factor-α-induced NF-κB activation, prevents nerve growth factor-induced neuronal differentiation, and decreases Bcl-xL gene expression in PC12 cells. Our data demonstrate that NIBP, by interacting with NIK and IKKβ, is a new enhancer of the cytokine-induced NF-κB signaling pathway. Because of its neuronal expression, we propose that NIBP may be a potential target for modulating the NF-κB signaling cascade in neuronal pathologies dependent upon abnormal activation of this pathway.
PMCID: PMC3707486  PMID: 15951441
3.  Activation and Desensitization of Rat A3-Adenosine Receptors by Selective Adenosine Derivatives and Xanthine-7-Ribosides 
Drug development research  1998;44(2-3):97-105.
Strategy, Management and Health PolicyVenture Capital Enabling TechnologyPreclinical ResearchPreclinical Development Toxicology, Formulation Drug Delivery, PharmacokineticsClinical Development Phases I-III Regulatory, Quality, ManufacturingPostmarketing Phase IV
Xanthine and adenosine derivatives, known to bind to recombinant rat A3 adenosine receptors stably expressed in Chinese hamster ovary cells, were characterized in a functional assay consisting of activation of A3 receptor-stimulated binding of [35S]GTPγS in rat RBL-2H3 cell membranes. 1,3-Dibutylxanthine-7-riboside-5′-N-methylcarboxamide (DBXRM, 7b), previously shown to inhibit adenylyl cyclase via rat A3 receptors with full efficacy, appeared to be a partial agonist at the rat A3 receptor of RBL-2H3 cells. Full agonists, such as Cl-IB-MECA or I-AB-MECA, were more potent and effective than the partial agonist DBXRM in causing desensitization of rat A3 receptors, as indicated by loss of [35S]GTPγS binding. At A1 receptors, antagonism of agonist-elicited inhibition of rat adipocyte adenylyl cyclase was observed for several xanthine-7-riboside derivatives that had been shown to be full agonists at rat A3 receptors. A new xanthine riboside (3′-deoxyDBXRM, 7c) was synthesized and found to be a partial agonist at rat A3 receptors and an antagonist at rat A1 receptors. Thus, it is possible for the same compound to stimulate one adenosine receptor subtype (A3) and block another subtype (A1) within the same species.
PMCID: PMC3589805  PMID: 23487508
xanthines; adenosine derivatives; nucleosides; adenylyl cyclase; guanine nucleotides
5.  Transgenic inhibition of astroglial NF-κB protects from optic nerve damage and retinal ganglion cell loss in experimental optic neuritis 
Optic neuritis is an acute, demyelinating neuropathy of the optic nerve often representing the first appreciable symptom of multiple sclerosis. Wallerian degeneration of irreversibly damaged optic nerve axons leads to death of retinal ganglion cells, which is the cause of permanent visual impairment. Although the specific mechanisms responsible for triggering these events are unknown, it has been suggested that a key pathological factor is the activation of immune-inflammatory processes secondary to leukocyte infiltration. However, to date, there is no conclusive evidence to support such a causal role for infiltrating peripheral immune cells in the etiopathology of optic neuritis.
To dissect the contribution of the peripheral immune-inflammatory response versus the CNS-specific inflammatory response in the development of optic neuritis, we analyzed optic nerve and retinal ganglion cells pathology in wild-type and GFAP-IκBα-dn transgenic mice, where NF-κB is selectively inactivated in astrocytes, following induction of EAE.
We found that, in wild-type mice, axonal demyelination in the optic nerve occurred as early as 8 days post induction of EAE, prior to the earliest signs of leukocyte infiltration (20 days post induction). On the contrary, GFAP-IκBα-dn mice were significantly protected and showed a nearly complete prevention of axonal demyelination, as well as a drastic attenuation in retinal ganglion cell death. This correlated with a decrease in the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, as well as a prevention of NAD(P)H oxidase subunit upregulation.
Our results provide evidence that astrocytes, not infiltrating immune cells, play a key role in the development of optic neuritis and that astrocyte-mediated neurotoxicity is dependent on activation of a transcriptional program regulated by NF-κB. Hence, interventions targeting the NF-κB transcription factor in astroglia may be of therapeutic value in the treatment of optic neuritis associated with multiple sclerosis.
PMCID: PMC3490907  PMID: 22963651
Optic neuritis; Astrogliosis; Retinal ganglion cell death; NF-κB pathway
6.  Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination 
Brain  2011;134(9):2736-2754.
Tumour necrosis factor is linked to the pathophysiology of various neurodegenerative disorders including multiple sclerosis. Tumour necrosis factor exists in two biologically active forms, soluble and transmembrane. Here we show that selective inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis. Treatment with XPro1595, a selective soluble tumour necrosis factor blocker, improves the clinical outcome, whereas non-selective inhibition of both forms of tumour necrosis factor with etanercept does not result in protection. The therapeutic effect of XPro1595 is associated with axon preservation and improved myelin compaction, paralleled by increased expression of axon-specific molecules (e.g. neurofilament-H) and reduced expression of non-phosphorylated neurofilament-H which is associated with axon damage. XPro1595-treated mice show significant remyelination accompanied by elevated expression of myelin-specific genes and increased numbers of oligodendrocyte precursors. Immunohistochemical characterization of tumour necrosis factor receptors in the spinal cord following experimental autoimmune encephalomyelitis shows tumour necrosis factor receptor 1 expression in neurons, oligodendrocytes and astrocytes, while tumour necrosis factor receptor 2 is localized in oligodendrocytes, oligodendrocyte precursors, astrocytes and macrophages/microglia. Importantly, a similar pattern of expression is found in post-mortem spinal cord of patients affected by progressive multiple sclerosis, suggesting that pharmacological modulation of tumour necrosis factor receptor signalling may represent an important target in affecting not only the course of mouse experimental autoimmune encephalomyelitis but human multiple sclerosis as well. Collectively, our data demonstrate that selective inhibition of soluble tumour necrosis factor improves recovery following experimental autoimmune encephalomyelitis, and that signalling mediated by transmembrane tumour necrosis factor is essential for axon and myelin preservation as well as remyelination, opening the possibility of a new avenue of treatment for multiple sclerosis.
PMCID: PMC3170538  PMID: 21908877
demyelination; multiple sclerosis; neurodegenerative disorders; neuroprotection; myelin repair
7.  Transgenic Inhibition of Glial NF-kappa B Reduces Pain Behavior and Inflammation after Peripheral Nerve Injury 
Pain  2010;148(3):509-518.
The transcription factor nuclear factor kappa B (NF-κB) is a key regulator of inflammatory processes in reactive glial cells. We utilized a transgenic mouse model (GFAP-IκBα-dn) where the classical NF-κB pathway is inactivated by overexpression of a dominant negative (dn) form of the inhibitor of kappa B (IκBα) in glial fibrillary acidic protein (GFAP) expressing cells, which include astrocytes, Schwann cells, and satellite cells of the dorsal root ganglion (DRG) and sought to determine whether glial NF-κB inhibition leads to a reduction in pain behavior and inflammation following chronic constriction injury (CCI) of the sciatic nerve. As expected, following CCI nuclear translocation, and hence activation, of NF-κB was detected only in the in the sciatic nerve of wild type (WT) mice, and not in GFAP-IκBα-dn mice, while upregulation of GFAP was observed in the in sciatic nerve and DRGs of both WT and GFAP-IκBα-dn mice, indicative of glial activation. Following CCI, mechanical and thermal hyperalgesia were reduced in GFAP-IκBα-dn mice compared to WT, as well as gene and protein expression of CCL2, CCR2 and CXCL10 in the sciatic nerve. Additionally, gene expression of TNF, CCL2, and CCR2 was reduced in the DRGs of transgenic mice compared to WT after CCI. We can therefore conclude that transgenic inhibition of NF-κB in GFAP expressing glial cells attenuated pain and inflammation after peripheral nerve injury. These findings suggest that targeting the inflammatory response in Schwann cells and satellite cells may be important in treating neuropathic pain.
PMCID: PMC2853034  PMID: 20097004
Pain; NF-kappa B; Chronic Constriction Injury; Peripheral Glia
8.  Inactivation of astroglial NF-κB promotes survival of retinal neurons following ischemic injury 
Reactive astrocytes have been implicated in neuronal loss following ischemic stroke. However, the molecular mechanisms associated with this process are yet to be fully elucidated. In this work, we tested the hypothesis that astroglial NF-κB, a key regulator of inflammatory responses, is a contributor to neuronal death following ischemic injury. We compared neuronal survival in the ganglion cell layer after retinal ischemia-reperfusion in wild type and in GFAP-IκBα-dn transgenic mice, where the NF-κB classical pathway is suppressed specifically in astrocytes. The GFAP-IκBα-dn mice showed significantly increased survival of neurons in the ganglion cell layer following ischemic injury as compared to WT littermates. Neuroprotection was associated with significantly reduced expression of pro-inflammatory genes, encoding Tnf-α, Ccl2 (Mcp1), Cxcl10 (IP10), Icam1, Vcam1, several subunits of NADPH oxidase and NO synthase in the retinas of GFAP-IκBα-dn mice. These data suggest that certain NF-κB-regulated pro-inflammatory and redox-active pathways are central to glial neurotoxicity induced by ischemic injury. The inhibition of these pathways in astrocytes may represent a feasible neuroprotective strategy for retinal ischemia and stroke.
PMCID: PMC2778328  PMID: 19614983
astrocytes; inflammation; ischemia; retinal pathology; transgenic mice
9.  Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury 
In the central nervous system (CNS), the transcription factor nuclear factor (NF)-κB is a key regulator of inflammation and secondary injury processes. After trauma or disease, the expression of NF-κB–dependent genes is highly activated, leading to both protective and detrimental effects on CNS recovery. We demonstrate that selective inactivation of astroglial NF-κB in transgenic mice expressing a dominant negative (dn) form of the inhibitor of κBα under the control of an astrocyte-specific promoter (glial fibrillary acidic protein [GFAP]–dn mice) leads to a dramatic improvement in functional recovery 8 wk after contusive spinal cord injury (SCI). Histologically, GFAP mice exhibit reduced lesion volume and substantially increased white matter preservation. In parallel, they show reduced expression of proinflammatory chemokines and cytokines, such as CXCL10, CCL2, and transforming growth factor–β2, and of chondroitin sulfate proteoglycans participating in the formation of the glial scar. We conclude that selective inhibition of NF-κB signaling in astrocytes results in protective effects after SCI and propose the NF-κB pathway as a possible new target for the development of therapeutic strategies for the treatment of SCI.
PMCID: PMC2212896  PMID: 15998793

Results 1-9 (9)