PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Neuropathology of Temporal Lobe Epilepsy 
Pathologic findings in surgical resections from patients with temporal lobe epilepsy include a wide range of diagnostic possibilities that can be categorized into different groups on the basis of etiology. This paper outlines the various pathologic entities described in temporal lobe epilepsy, including some newly recognized epilepsy-associated tumors, and briefly touch on the recent classification of focal cortical dysplasia. This classification takes into account coexistent pathologic lesions in focal cortical dysplasia.
doi:10.1155/2012/624519
PMCID: PMC3420738  PMID: 22957233
2.  Clinical Neuropathology practice guide 6-2013: morphology and an appropriate immunohistochemical screening panel aid in the identification of synovial sarcoma by neuropathologists  
Clinical Neuropathology  2013;32(6):461-470.
Aims: Pathologists are under increasing pressure to accurately subclassify sarcomas, yet neuropathologists have limited collective experience with rare sarcoma types such as synovial sarcoma. We reviewed 9 synovial sarcomas affecting peripheral nerve diagnosed by neuropathologists and explored the morphologic and immunohistochemical differences between these and MPNST. Our goal was to make practical recommendations for neuropathologists regarding which spindle cell tumors affecting nerve should be sent for SYT-SSX testing. Methods: Clinical records and genetics were reviewed retrospectively and central pathology review of 9 synovial sarcomas and 6 MPNST included immunohistochemistry for SOX10, S100, BAF47, CK (lmw, pan, CK7, CK19), EMA, CD34, bcl2, CD99, and neurofilament. Results: Common synovial sarcoma sites were brachial plexus, spinal and femoral nerve, none were “intra-neural”, all had the SYT-SSX1 translocation, and 6/9 were monophasic with myxoid stroma and distinct collagen. Half of the monophasic synovial sarcomas expressed CK7, CK19 or panCK in a “rare positive cells pattern”, 8/9 (89%) expressed EMA, and all were SOX10 immunonegative with reduced but variable BAF47 expression. Conclusions: We recommend that upon encountering a cellular spindle cell tumor affecting nerve neuropathologists consider the following: 1) SYT-SSX testing should be performed on any case with morphology suspicious for monophasic synovial sarcoma including wiry or thick bands of collagen and relatively monomorphous nuclei; 2) neuropathologists should employ a screening immunohistochemical panel including one of CK7, panCK or CK19, plus EMA, S100 and SOX10, and 3) SYT-SSX testing should be performed on any spindle cell tumor with CK and/or EMA immunopositivity if SOX10 immunostaining is negative or only labels entrapped nerve elements.
doi:10.5414/NP300685
PMCID: PMC3852132  PMID: 24131748
synovial sarcoma; nerve; nervous system; SOX10; BAF47; malignant peripheral nerve sheath tumor
3.  FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations 
Brain  2011;134(9):2595-2609.
Accumulation of the DNA/RNA binding protein fused in sarcoma as cytoplasmic inclusions in neurons and glial cells is the pathological hallmark of all patients with amyotrophic lateral sclerosis with mutations in FUS as well as in several subtypes of frontotemporal lobar degeneration, which are not associated with FUS mutations. The mechanisms leading to inclusion formation and fused in sarcoma-associated neurodegeneration are only poorly understood. Because fused in sarcoma belongs to a family of proteins known as FET, which also includes Ewing’s sarcoma and TATA-binding protein-associated factor 15, we investigated the potential involvement of these other FET protein family members in the pathogenesis of fused in sarcoma proteinopathies. Immunohistochemical analysis of FET proteins revealed a striking difference among the various conditions, with pathology in amyotrophic lateral sclerosis with FUS mutations being labelled exclusively for fused in sarcoma, whereas fused in sarcoma-positive inclusions in subtypes of frontotemporal lobar degeneration also consistently immunostained for TATA-binding protein-associated factor 15 and variably for Ewing’s sarcoma. Immunoblot analysis of proteins extracted from post-mortem tissue of frontotemporal lobar degeneration with fused in sarcoma pathology demonstrated a relative shift of all FET proteins towards insoluble protein fractions, while genetic analysis of the TATA-binding protein-associated factor 15 and Ewing’s sarcoma gene did not identify any pathogenic variants. Cell culture experiments replicated the findings of amyotrophic lateral sclerosis with FUS mutations by confirming the absence of TATA-binding protein-associated factor 15 and Ewing’s sarcoma alterations upon expression of mutant fused in sarcoma. In contrast, all endogenous FET proteins were recruited into cytoplasmic stress granules upon general inhibition of Transportin-mediated nuclear import, mimicking the findings in frontotemporal lobar degeneration with fused in sarcoma pathology. These results allow a separation of fused in sarcoma proteinopathies caused by FUS mutations from those without a known genetic cause based on neuropathological features. More importantly, our data imply different pathological processes underlying inclusion formation and cell death between both conditions; the pathogenesis in amyotrophic lateral sclerosis with FUS mutations appears to be more restricted to dysfunction of fused in sarcoma, while a more global and complex dysregulation of all FET proteins is involved in the subtypes of frontotemporal lobar degeneration with fused in sarcoma pathology.
doi:10.1093/brain/awr201
PMCID: PMC3170539  PMID: 21856723
FUS; TAF15; EWS; amyotrophic lateral sclerosis; frontotemporal dementia
4.  Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation 
Acta Neuropathologica  2011;122(1):87-98.
Mutations in the gene encoding the fused in sarcoma (FUS) protein are responsible for ~3% of familial amyotrophic lateral sclerosis (ALS) and <1% of sporadic ALS (ALS-FUS). Descriptions of the associated neuropathology are few and largely restricted to individual case reports. To better define the neuropathology associated with FUS mutations, we have undertaken a detailed comparative analysis of six cases of ALS-FUS that include sporadic and familial cases, with both juvenile and adult onset, and with four different FUS mutations. We found significant pathological heterogeneity among our cases, with two distinct patterns that correlated with the disease severity and the specific mutation. Frequent basophilic inclusions and round FUS-immunoreactive (FUS-ir) neuronal cytoplasmic inclusions (NCI) were a consistent feature of our early-onset cases, including two with the p.P525L mutation. In contrast, our late-onset cases, that included two with the p.R521C mutation, had tangle-like NCI and numerous FUS-ir glial cytoplasmic inclusions. Double-labeling experiments demonstrated that many of the glial inclusions were in oligodendrocytes. Comparison with the neuropathology of cases of frontotemporal lobar degeneration with FUS-ir pathology showed significant differences and suggests that FUS mutations are associated with a distinct pathobiology.
doi:10.1007/s00401-011-0838-7
PMCID: PMC3319073  PMID: 21604077
fused in sarcoma; FUS; amyotrophic lateral sclerosis; ALS; basophilic inclusions

Results 1-4 (4)