PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Ahmed, keshan")
1.  Parkin Disease: A Clinicopathologic Entity? 
JAMA neurology  2013;70(5):571-579.
Importance
Mutations in the gene encoding parkin (PARK2) are the most common cause of autosomal recessive juvenile-onset and young-onset parkinsonism. The few available detailed neuropathologic reports suggest that homozygous and compound heterozygous parkin mutations are characterized by severe substantia nigra pars compacta neuronal loss.
Objective
To investigate whether parkin -linked parkinsonism is a different clinicopathologic entity to Parkinson disease (PD).
Design, Setting, and Participants
We describe the clinical, genetic, and neuropathologic findings of 5 unrelated cases of parkin disease and compare them with 5 pathologically confirmed PD cases and 4 control subjects. The PD control cases and normal control subjects were matched first for age at death then disease duration (PD only) for comparison.
Results
Presenting signs in the parkin disease cases were hand or leg tremor often combined with dystonia. Mean age at onset was 34 years; all cases were compound heterozygous for mutations of parkin. Freezing of gait, postural deformity, and motor fluctuations were common late features. No patients had any evidence of cognitive impairment or dementia. Neuronal counts in the substantia nigra pars compacta revealed that neuronal loss in the parkin cases was as severe as that seen in PD, but relative preservation of the dorsal tier was seen in comparison with PD (P = .04). Mild neuronal loss was identified in the locus coeruleus and dorsal motor nucleus of the vagus, but not in the nucleus basalis of Meynert, raphe nucleus, or other brain regions. Sparse Lewy bodies were identified in 2 cases (brainstem and cortex).
Conclusions and Relevance
These findings support the notion that parkin disease is characterized by a more restricted morphologic abnormality than is found in PD, with predominantly ventral nigral degeneration and absent or rare Lewy bodies.
doi:10.1001/jamaneurol.2013.172
PMCID: PMC4202385  PMID: 23459986
2.  Corticobasal degeneration with olivopontocerebellar atrophy and TDP-43 pathology: an unusual clinicopathologic variant of CBD 
Acta neuropathologica  2013;125(5):741-752.
CBD is a disorder affecting cognition and movement due to a progressive neurodegeneration associated with distinctive neuropathologic features, including abnormal phosphorylated tau protein in neurons and glia in cortex, basal ganglia, diencephalon and brainstem, as well as ballooned neurons and astrocytic plaques. We identified three cases of CBD with olivopontocerebellar atrophy (CBD-OPCA) that did not have α-synuclein-positive glial cytoplasmic inclusions of multiple system atrophy (MSA). Two patients had clinical features suggestive of progressive supranuclear palsy (PSP), and the third case had cerebellar ataxia thought to be due to idiopathic OPCA. Neuropathologic features of CBD-OPCA are compared to typical CBD, as well as MSA and PSP. CBD-OPCA and MSA had marked neuronal loss in pontine nuclei, inferior olivary nucleus, and Purkinje cell layer. Neuronal loss and grumose degeneration in the cerebellar dentate nucleus was comparable in CBD-OPCA and PSP. Image analysis of tau pathology showed greater infratentorial tau burden, especially in pontine base, in CBD-OPCA compared with typical CBD. Additionally, CBD-OPCA had TDP-43 immunoreactive neuronal and glial cytoplasmic inclusions and threads throughout the basal ganglia and in olivopontocerebellar system. CBD-OPCA met neuropathologic research diagnostic criteria for CBD and shared tau biochemical characteristics with typical CBD. These results suggest that CBD-OPCA is a distinct clinicopathologic variant of CBD with olivopontocerebellar TDP-43 pathology.
doi:10.1007/s00401-013-1087-8
PMCID: PMC3633676  PMID: 23371366
Corticobasal degeneration; olivopontocerebellar atrophy; tauopathy; multiple system atrophy; progressive supranuclear palsy; TDP-43
3.  A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity 
Acta Neuropathologica  2014;127(5):667-683.
Intracellular inclusions composed of hyperphosphorylated filamentous tau are a hallmark of Alzheimer’s disease, progressive supranuclear palsy, Pick’s disease and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates do not only seed further tau aggregation within neurons, but can also spread to neighbouring cells and functionally connected brain regions. This process is referred to as ‘tau propagation’ and may explain the stereotypic progression of tau pathology in the brains of Alzheimer’s disease patients. Here, we describe a novel in vivo model of tau propagation using human P301S tau transgenic mice infused unilaterally with brain extract containing tau aggregates. Infusion-related neurofibrillary tangle pathology was first observed 2 weeks post-infusion and increased in a stereotypic, time-dependent manner. Contralateral and anterior/posterior spread of tau pathology was also evident in nuclei with strong synaptic connections (efferent and afferent) to the site of infusion, indicating that spread was dependent on synaptic connectivity rather than spatial proximity. This notion was further supported by infusion-related tau pathology in white matter tracts that interconnect these regions. The rapid and robust propagation of tau pathology in this model will be valuable for both basic research and the drug discovery process.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-014-1254-6) contains supplementary material, which is available to authorized users.
doi:10.1007/s00401-014-1254-6
PMCID: PMC4252866  PMID: 24531916
Tau; Aggregation; Propagation; Prion; Transgenic mouse line; Human P301S tau
4.  Globular glial tauopathies (GGT): consensus recommendations 
Acta neuropathologica  2013;126(4):537-544.
Rrecent studies have highlighted a group of 4-repeat (4R) tauopathies that are characterised neuropathologically by widespread, globular glial inclusions (GGIs). Tau immunohistochemistry reveals 4R immunore-active globular oligodendroglial and astrocytic inclusions and the latter are predominantly negative for Gallyas silver staining. These cases are associated with a range of clinical presentations, which correlate with the severity and distribution of underlying tau pathology and neurodegeneration. Their heterogeneous clinicopathological features combined with their rarity and under-recognition have led to cases characterised by GGIs being described in the literature using various and redundant terminologies. In this report, a group of neuropathologists form a consensus on the terminology and classification of cases with GGIs. After studying microscopic images from previously reported cases with suspected GGIs (n = 22), this panel of neuropathologists with extensive experience in the diagnosis of neurodegenerative diseases and a documented record of previous experience with at least one case with GGIs, agreed that (1) GGIs were present in all the cases reviewed; (2) the morphology of globular astrocytic inclusions was different to tufted astrocytes and finally that (3) the cases represented a number of different neuropathological subtypes. They also agreed that the different morphological subtypes are likely to be part of a spectrum of a distinct disease entity, for which they recommend that the overarching term globular glial tauopathy (GGT) should be used. Type I cases typically present with frontotemporal dementia, which correlates with the fronto-temporal distribution of pathology. Type II cases are characterised by pyramidal features reflecting motor cortex involvement and corticospinal tract degeneration. Type III cases can present with a combination of frontotemporal dementia and motor neuron disease with fronto-temporal cortex, motor cortex and corticospinal tract being severely affected. extrapyramidal features can be present in Type II and III cases and significant degeneration of the white matter is a feature of all GGT subtypes. Improved detection and classification will be necessary for the establishment of neuropathological and clinical diagnostic research criteria in the future.
doi:10.1007/s00401-013-1171-0
PMCID: PMC3914659  PMID: 23995422
5.  CYTOKINE EXPRESSION AND MICROGLIAL ACTIVATION IN PROGRESSIVE SUPRANUCLEAR PALSY 
Parkinsonism & related disorders  2011;17(9):683-688.
Although little is known about the etiology of progressive supranuclear palsy (PSP), genetic and epigenetic factors, oxidative injury and inflammation are thought to contribute to its development and/or progression. Evidence for activated glia involvement in PSP has raised the possibility that neuroinflammation may contribute to its pathogenesis. To investigate the correlation between neuroinflammation and PSP, a comparative study was conducted on the patterns of cytokine expression in different regions of the brains of PSP, Alzheimer’s disease (AD) patients and normal controls. Our results show different patterns of cytokine expression in each disease, with the expression of IL-1β transcripts being significantly higher in the substantia nigra of PSP than in AD and controls, while AD brains had significantly higher IL-1β expression in the parietal cortex compared to PSP and controls. In addition, expression of TGFβ was significantly higher in the cortical areas (particularly frontal and parietal lobes) of AD compared to PSP and controls. These results show a disease-specific topographical relationship among the expression of certain cytokines (IL-1β and TGFβ), microglial activation and neurodegenerative changes, suggesting that these cytokines may contribute to the pathologic process. If so, the use of cytokine-inhibitors and/or other anti-inflammatory agents may be able to slow disease progression in PSP.
doi:10.1016/j.parkreldis.2011.06.007
PMCID: PMC3196843  PMID: 21741294
Alzheimer’s disease; brain; cytokines; inflammation; microglia; progressive supranuclear palsy
6.  A comparative clinical, pathological, biochemical and genetic study of fused in sarcoma proteinopathies 
Brain  2011;134(9):2548-2564.
Neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration are rare diseases characterized by ubiquitin-positive inclusions lacking transactive response DNA-binding protein-43 and tau. Recently, mutations in the fused in sarcoma gene have been shown to cause familial amyotrophic lateral sclerosis and fused in sarcoma-positive neuronal inclusions have subsequently been demonstrated in neuronal intermediate filament inclusion disease and atypical frontotemporal lobar degeneration with ubiquitinated inclusions. Here we provide clinical, imaging, morphological findings, as well as genetic and biochemical data in 14 fused in sarcoma proteinopathy cases. In this cohort, the age of onset was variable but included cases of young-onset disease. Patients with atypical frontotemporal lobar degeneration with ubiquitinated inclusions all presented with behavioural variant frontotemporal dementia, while the clinical presentation in neuronal intermediate filament inclusion disease was more heterogeneous, including cases with motor neuron disease and extrapyramidal syndromes. Neuroimaging revealed atrophy of the frontal and anterior temporal lobes as well as the caudate in the cases with atypical frontotemporal lobar degeneration with ubiquitinated inclusions, but was more heterogeneous in the cases with neuronal intermediate filament inclusion disease, often being normal to visual inspection early on in the disease. The distribution and severity of fused in sarcoma-positive neuronal cytoplasmic inclusions, neuronal intranuclear inclusions and neurites were recorded and fused in sarcoma was biochemically analysed in both subgroups. Fused in sarcoma-positive neuronal cytoplasmic and intranuclear inclusions were found in the hippocampal granule cell layer in variable numbers. Cortical fused in sarcoma-positive neuronal cytoplasmic inclusions were often ‘Pick body-like’ in neuronal intermediate filament inclusion disease, and annular and crescent-shaped inclusions were seen in both conditions. Motor neurons contained variable numbers of compact, granular or skein-like cytoplasmic inclusions in all fused in sarcoma-positive cases in which brainstem and spinal cord motor neurons were available for study (five and four cases, respectively). No fused in sarcoma mutations were found in any cases. Biochemically, two major fused in sarcoma species were found and shown to be more insoluble in the atypical frontotemporal lobar degeneration with ubiquitinated inclusions subgroup compared with neuronal intermediate filament inclusion disease. There is considerable overlap and also significant differences in fused in sarcoma-positive pathology between the two subgroups, suggesting they may represent a spectrum of the same disease. The co-existence of fused in sarcoma-positive inclusions in both motor neurons and extramotor cerebral structures is a characteristic finding in sporadic fused in sarcoma proteinopathies, indicating a multisystem disorder.
doi:10.1093/brain/awr160
PMCID: PMC3170529  PMID: 21752791
frontotemporal lobar degeneration; FUS; clinical presentation; neuropathology; biochemistry
7.  Beta-amyloid burden is not associated with rates of brain atrophy 
Annals of neurology  2008;63(2):204-212.
Objective
To test the hypothesis that beta-amyloid (Aβ) burden is associated with rates of brain atrophy.
Methods
Forty-five subjects who had been prospectively studied, died, and had an autopsy diagnosis of low, intermediate, or high probability of Alzheimer's disease that had two volumetric head MRI scans were identified. Compact, as well as total (compact + diffuse) Aβ burden was measured using a computerized image analyzer with software program to detect the proportion of grey matter occupied by Aβ. Visual ratings of Aβ burden were also performed. The boundary-shift integral (BSI) was used to calculate change over time in whole brain and ventricular volume. All BSI results were annualized by adjusting for scan interval. Demographics, cognitive measures, clinical diagnoses, apolipoprotein E genotype, neurofibrillary tangle pathology, and vascular lesion burden were determined.
Results
There was no correlation between compact or total Aβ burden, or visual Aβ ratings, and rates of brain loss or ventricular expansion in all subjects. However, significant correlations were observed between rates of brain loss and age, Braak stage, and change over time in cognitive measures. These features also correlated with rates of ventricular expansion. The rates of brain loss and ventricular expansion were greater in demented compared to non-demented subjects.
Interpretation
These findings suggest that rate of brain volume loss is not determined by the amount of insoluble Aβ in the grey matter.
doi:10.1002/ana.21223
PMCID: PMC2735194  PMID: 17894374
8.  TDP-43 IMMUNOREACTIVITY IN HIPPOCAMPAL SCLEROSIS AND ALZHEIMER'S DISEASE 
Annals of neurology  2007;61(5):435-445.
Goal
This study aimed to determine the frequency of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) in the setting of hippocampal sclerosis (HpScl) and Alzheimer's disease (AD) using immunohistochemistry for TAR DNA binding protein 43 (TDP-43), a putative marker for FTLD-U.
Methods
Initially, 21 cases of HpScl associated with a variety of other pathologic processes and 74 cases of AD were screened for FTLD-U with TDP-43 immunohistochemistry. A confirmation study was performed on 93 additional AD cases. Specificity of TDP-43 antibodies was assessed using double immunolabeling confocal microscopy, immunoelectron microscopy and biochemistry.
Results
TDP-43 immunoreactivity was detected in 71% of HpScl and 23% of AD cases. Double immunostaining of AD cases for TDP-43 and phospho-tau showed that the TDP-43 immunoreactive inclusions were usually distinct from neurofibrillary tangles. At the ultrastructural level TDP-43 immunoreactivity in AD was associated with granular and filamentous cytosolic material and only occasionally associated with tau filaments. Western blots of AD cases revealed a band that migrated at a higher molecular weight than normal TDP-43 that was not present in AD cases without TDP-43 immunoreactivity.
Interpretation
The present results suggest that as many as 20% of AD cases and more than 70% of HpScl cases have pathology similar to that found in FTLD-U. Whether this represents concomitant FTLD-U or is analogous to colocalization of α-synuclein and tau in AD, reflecting a propensity for co-deposition of abnormal protein conformers, remains to be determined.
doi:10.1002/ana.21154
PMCID: PMC2677204  PMID: 17469117
Alzheimer's disease; biochemistry; electron microscopy; frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U); hippocampal sclerosis; immunohistochemistry; TAR DNA binding protein 43 (TDP-43)
9.  Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia 
Human Molecular Genetics  2008;17(23):3631-3642.
Loss-of-function mutations in progranulin (GRN) cause ubiquitin- and TAR DNA-binding protein 43 (TDP-43)-positive frontotemporal dementia (FTLD-U), a progressive neurodegenerative disease affecting ∼10% of early-onset dementia patients. Here we expand the role of GRN in FTLD-U and demonstrate that a common genetic variant (rs5848), located in the 3′-untranslated region (UTR) of GRN in a binding-site for miR-659, is a major susceptibility factor for FTLD-U. In a series of pathologically confirmed FTLD-U patients without GRN mutations, we show that carriers homozygous for the T-allele of rs5848 have a 3.2-fold increased risk to develop FTLD-U compared with homozygous C-allele carriers (95% CI: 1.50–6.73). We further demonstrate that miR-659 can regulate GRN expression in vitro, with miR-659 binding more efficiently to the high risk T-allele of rs5848 resulting in augmented translational inhibition of GRN. A significant reduction in GRN protein was observed in homozygous T-allele carriers in vivo, through biochemical and immunohistochemical methods, mimicking the effect of heterozygous loss-of-function GRN mutations. In support of these findings, the neuropathology of homozygous rs5848 T-allele carriers frequently resembled the pathological FTLD-U subtype of GRN mutation carriers. We suggest that the expression of GRN is regulated by miRNAs and that common genetic variability in a miRNA binding-site can significantly increase the risk for FTLD-U. Translational regulation by miRNAs may represent a common mechanism underlying complex neurodegenerative disorders.
doi:10.1093/hmg/ddn257
PMCID: PMC2581433  PMID: 18723524
10.  Progranulin in frontotemporal lobar degeneration and neuroinflammation 
Progranulin (PGRN) is a pleiotropic protein that has gained the attention of the neuroscience community with recent discoveries of mutations in the gene for PGRN that cause frontotemporal lobar degeneration (FTLD). Pathogenic mutations in PGRN result in null alleles, and the disease is likely the result of haploinsufficiency. Little is known about the normal function of PGRN in the central nervous system apart from a role in brain development. It is expressed by microglia and neurons. In the periphery, PGRN is involved in wound repair and inflammation. High PGRN expression has been associated with more aggressive growth of various tumors. The properties of full length PGRN are distinct from those of proteolytically derived peptides, referred to as granulins (GRNs). While PGRN has trophic properties, GRNs are more akin to inflammatory mediators such as cytokines. Loss of the neurotrophic properties of PGRN may play a role in selective neuronal degeneration in FTLD, but neuroinflammation may also be important. Gene expression studies suggest that PGRN is up-regulated in a variety of neuroinflammatory conditions, and increased PGRN expression by microglia may play a pivotal role in the response to brain injury, neuroinflammation and neurodegeneration.
doi:10.1186/1742-2094-4-7
PMCID: PMC1805428  PMID: 17291356
11.  Hippocampal sclerosis dementia differs from hippocampal sclerosis in frontal lobe degeneration 
Acta Neuropathologica  2006;113(3):245-252.
Hippocampal sclerosis (HS) is characterized by selective neuronal loss and gliosis in CA1 and the subiculum and has been associated with several disorders, including Alzheimer’s disease, frontotemporal lobar degeneration with ubiquitin immunoreactive inclusions (FTLD-U), vascular dementia and some tauopathies. In some cases, HS is not associated with other degenerative pathologies. Such cases are sometimes referred to as HS dementia (HSD). Differences between HSD and HS in the setting of FTLD-U have not been systematically investigated. To this end, eight cases of HSD and ten cases of HS associated with FTLD-U were studied with Nissl and periodic acid-Schiff stains to assess neuronal loss and corpora amylacea, respectively. Sections were immunostained with antibodies to glial fibrillary acidic protein, HLA-DR and synaptophysin and immunoreactivity was measured with image analysis in CA1 and the subiculum of each case. Additionally, sections were immunostained with antibodies to 4-R tau to determine the presence of argyrophilic grains. HSD was different from HS associated with FTLD-U. Specifically, it was more common in the elderly, and it was associated with more marked neuronal and synaptic loss and with greater reactive gliosis. Corpora amylacea tended to be more frequent in HSD than in FTLD-U, but there was no difference in frequency of argyrophilic grains.
doi:10.1007/s00401-006-0183-4
PMCID: PMC1794627  PMID: 17195931
Hippocampal sclerosis dementia; Frontotemporal degeneration; Immunohistochemistry; Image analysis

Results 1-11 (11)