PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  In vivo biocompatibility of two PEG/PAA interpenetrating polymer networks as corneal inlays following deep stromal pocket implantation 
This study compared the effects of implanting two interpenetrating polymer networks (IPNs) into rabbit corneas. The first (Implant 1) was based on PEG-diacrylate, the second (Implant 2) was based on PEG-diacrylamide. There were inserted into deep stromal pockets created using a manual surgical technique for either 3 or 6 months. The implanted corneas were compared with normal and sham-operated corneas through slit lamp observation, anterior segment optical coherence tomography, in vivo confocal scanning and histological examination. Corneas with Implant 1 (based on PEG-diacrylate) developed diffuse haze, ulcers and opacities within 3 months, while corneas with Implant 2 (based on PEG-diacrylamide) remained clear at 6 months. They also exhibited normal numbers of epithelial cell layers, without any immune cell infiltration, inflammation, oedema or neovascularisation at post-operative 6 month. Morphological studies showed transient epithelial layer thinning over the hydrogel inserted area and elevated keratocyte activity at 3 months; however, the epithelium thickness and keratocyte morphology were improved at 6 months. Implant 2 exhibited superior in vivo biocompatibility and higher optical clarity than Implant 1. PEG-diacrylamide-based IPN hydrogel is therefore a potential candidate for corneal inlays to correct refractive error.
doi:10.1007/s10856-012-4848-3
PMCID: PMC3620449  PMID: 23354737
2.  Effect of Fibrin Glue on the Biomechanical Properties of Human Descemet's Membrane 
PLoS ONE  2012;7(5):e37456.
Background
Corneal transplantation has rapidly evolved from full-thickness penetrating keratoplasty (PK) to selective tissue corneal transplantation, where only the diseased portions of the patient's corneal tissue are replaced with healthy donor tissue. Descemet's membrane endothelial keratoplasty (DMEK) performed in patients with corneal endothelial dysfunction is one such example where only a single layer of endothelial cells with its basement membrane (10–15 µm in thickness), Descemet's membrane (DM) is replaced. It is challenging to replace this membrane due to its intrinsic property to roll in an aqueous environment. The main objective of this study was to determine the effects of fibrin glue (FG) on the biomechanical properties of DM using atomic force microscopy (AFM) and relates these properties to membrane folding propensity.
Methodology/Principal Findings
Fibrin glue was sprayed using the EasySpray applicator system, and the biomechanical properties of human DM were determined by AFM. We studied the changes in the “rolling up” tendency of DM by examining the changes in the elasticity and flexural rigidity after the application of FG. Surface topography was assessed using scanning electron microscopy (SEM) and AFM imaging. Treatment with FG not only stabilized and stiffened DM but also led to a significant increase in hysteresis of the glue-treated membrane. In addition, flexural or bending rigidity values also increased in FG-treated membranes.
Conclusions/Significance
Our results suggest that fibrin glue provides rigidity to the DM/endothelial cell complex that may aid in subsequent manipulation by maintaining tissue integrity.
doi:10.1371/journal.pone.0037456
PMCID: PMC3360777  PMID: 22662156
3.  Tafazzin regulates human conjunctiva epithelial cell proliferation via inhibiting TGFβ signaling pathway 
Molecular Vision  2012;18:1402-1410.
Purpose
To investigate the role of Tafazzin (TAZ) protein in regulating the proliferation of normal human conjunctiva epithelial cells and epithelial cells from pterygium tissue.
Methods
Conjunctiva epithelial cells were cultured in keratinocytes growth medium and treated with transformation growth factor β (TGFβ) to analyze the expression and translocation of TAZ protein by immunostaining and BrdU analysis. Immortalized conjunctiva epithelial cells (NHC) were treated with TGFβ, targeting siRNA, TGFβ receptor antibody or TGFβ receptor inhibitor, to study the involvement of TAZ and TGFβ signaling pathway in conjunctiva cell proliferation by cell adhesion assay. Conjunctiva tissues from a normal human eye and an eye with pterygium disease were collected for histological analyses and western blot to evaluate the TAZ protein expression in vivo.
Results
TAZ expression was upregulated in mitotic conjunctiva epithelial cells, proliferating conjunctiva epithelial cells, TGFβ treated conjunctiva epithelial cells and human pterygium epithelium. TAZ siRNA induced less conjunctiva epithelial cell growth. Moreover, TGFβ receptor antibody and TGFβ receptor inhibitor rescued this anti-proliferative effect of TAZ siRNA.
Conclusions
TAZ is involved in human conjunctiva epithelial cells proliferation via regulating TGFβ signaling pathway.
PMCID: PMC3369895  PMID: 22690118
4.  Cell Migration from Baby to Mother 
Cell Adhesion & Migration  2007;1(1):19-27.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.
PMCID: PMC2633676  PMID: 19262088
fetomaternal microchimerism; stem cells; progenitor cells; placental barrier; blood-brain barrier; adhesion; migration
5.  In vitro effect of a corrosive hostile ocular surface on candidate biomaterials for keratoprosthesis skirt 
The British Journal of Ophthalmology  2012;96(9):1252-1258.
Aim
Keratoprosthesis (KPro) devices are prone to long-term corrosion and microbiological assault. The authors aimed to compare the inflammatory response and material dissolution properties of two candidate KPro skirt materials, hydroxyapatite (HA) and titania (TiO2) in a simulated in vitro cornea inflammation environment.
Methods
Lipopolysaccharide-stimulated cytokine secretions were evaluated with human corneal fibroblasts on both HA and TiO2. Material specimens were subjected to electrochemical and long-term incubation test with artificial tear fluid (ATF) of various acidities. Topography and surface roughness of material discs were analysed by scanning electron microscopy and atomic force microscopy.
Results
There were less cytokines secreted from human corneal fibroblasts seeded on TiO2 substrates as compared with HA. TiO2 was more resistant to the corrosion effect caused by acidic ATF in contrast to HA. Moreover, the elemental composition of TiO2 was more stable than HA after long-term incubation with ATF.
Conclusions
TiO2 is more resistant to inflammatory degradation and has a higher corrosion resistance as compared with HA, and in this regard may be a suitable material to replace HA as an osteo-odonto-keratoprosthesis skirt. This would reduce resorption rates for KPro surgery.
doi:10.1136/bjophthalmol-2012-301633
PMCID: PMC3432489  PMID: 22802307
OOKP; microbial infection; material dissolution; artificial tear fluid; cornea; biochemistry; prosthesis; microbiology; contact lens; stem cells; lens and zonules; treatment surgery; epidemiology; experimental and animal models; ocular surface; genetics; imaging; treatment lasers

Results 1-5 (5)