PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (57)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  An Alteration in ELMOD3, an Arl2 GTPase-Activating Protein, Is Associated with Hearing Impairment in Humans 
PLoS Genetics  2013;9(9):e1003774.
Exome sequencing coupled with homozygosity mapping was used to identify a transition mutation (c.794T>C; p.Leu265Ser) in ELMOD3 at the DFNB88 locus that is associated with nonsyndromic deafness in a large Pakistani family, PKDF468. The affected individuals of this family exhibited pre-lingual, severe-to-profound degrees of mixed hearing loss. ELMOD3 belongs to the engulfment and cell motility (ELMO) family, which consists of six paralogs in mammals. Several members of the ELMO family have been shown to regulate a subset of GTPases within the Ras superfamily. However, ELMOD3 is a largely uncharacterized protein that has no previously known biochemical activities. We found that in rodents, within the sensory epithelia of the inner ear, ELMOD3 appears most pronounced in the stereocilia of cochlear hair cells. Fluorescently tagged ELMOD3 co-localized with the actin cytoskeleton in MDCK cells and actin-based microvilli of LLC-PK1-CL4 epithelial cells. The p.Leu265Ser mutation in the ELMO domain impaired each of these activities. Super-resolution imaging revealed instances of close association of ELMOD3 with actin at the plasma membrane of MDCK cells. Furthermore, recombinant human GST-ELMOD3 exhibited GTPase activating protein (GAP) activity against the Arl2 GTPase, which was completely abolished by the p.Leu265Ser mutation. Collectively, our data provide the first insights into the expression and biochemical properties of ELMOD3 and highlight its functional links to sound perception and actin cytoskeleton.
Author Summary
Autosomal recessive nonsyndromic hearing loss is a genetically heterogeneous disorder. Here, we report a severe-to-profound mixed hearing loss locus, DFNB88 on chromosome 2p12-p11.2. Exome enrichment followed by massive parallel sequencing revealed a c.794T>C transition mutation in ELMOD3 that segregated with DFNB88-associated hearing loss in a large Pakistani family. This transition mutation is predicted to substitute a highly invariant leucine residue with serine (p.Leu265Ser) in the engulfment and cell motility (ELMO) domain of the protein. No biological activity has been described previously for the ELMOD3 protein. We investigated the biochemical properties and ELMOD3 expression to gain mechanistic insights into the function of ELMOD3 in the inner ear. In rodent inner ears, ELMOD3 immunoreactivity was observed in the cochlear and vestibular hair cells and supporting cells. However, ELMOD3 appears most pronounced in the stereocilia of cochlear hair cells. Ex vivo, ELMOD3 is associated with actin-based structures, and this link is impaired by the DFNB88 mutation. ELMOD3 exhibited GAP activity against Arl2, a small GTPase, providing a potential functional link between Arf family signaling and stereocilia actin-based cytoskeletal architecture. Our study provides new insights into the molecules that are necessary for the development and/or function of inner ear sensory cells.
doi:10.1371/journal.pgen.1003774
PMCID: PMC3764207  PMID: 24039609
2.  Phenotypic variability of CLDN14 mutations causing DFNB29 hearing loss in the Pakistani population 
Journal of human genetics  2012;58(2):102-108.
Human hereditary deafness at the DFNB29 autosomal locus on chromosome 21q22.1 is caused by recessive mutations of CLDN14, encoding claudin 14. This tight junction protein is tetra-membrane spanning that localizes to the apical tight junctions of organ of Corti hair cells and in many other tissues. Typically, the DFNB29 phenotype is characterized by pre-lingual, bi-lateral, sensorineural hearing loss. The goal of this study was to define the identity and frequency of CLDN14 mutations and associated inner ear phenotypes in a cohort of 800 Pakistani families segregating deafness. Hearing loss in 15 multi-generational families was found to co-segregate with CLDN14-linked STR markers. The sequence of the six exons and regions flanking the introns of CLDN14 in these 15 families revealed five likely pathogenic alleles. Two are novel missense substitutions (p.Ser87Ile and p.Ala94Val) while p.Arg81His, p.Val85Asp and p.Met133ArgfsX23 have been reported previously. Haplotype analyses indicate that p.Val85Asp and p.Met133ArgfsX23 are founder mutations. The p.Val85Asp accounts for approximately 67% of the mutant alleles of CLDN14 in our cohort. Combined with previously reported data, CLDN14 mutations were identified in 18 of 800 Pakistani families (2.25%; 95% CI, 1.4-3.5%). Hearing loss in the affected individuals homozygous for CLDN14 mutations varied from moderate to profound. This phenotypic variability may be due to environmental factors (e.g. drug and noise exposure) and/or genetic modifiers.
doi:10.1038/jhg.2012.143
PMCID: PMC3596117  PMID: 23235333
CLDN14; claudin 14; DFNB29; mild hearing loss; profound deafness; Pakistan
3.  Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic heart 
Introduction
Mesenchymal stem cells (MSCs) have the potential for treatment of diabetic cardiomyopathy; however, the repair capability of MSCs declines with age and disease. MSCs from diabetic animals exhibit impaired survival, proliferation, and differentiation and therefore require a strategy to improve their function. The aim of the study was to develop a preconditioning strategy to augment the ability of MSCs from diabetes patients to repair the diabetic heart.
Methods
Diabetes was induced in C57BL/6 mice (6 to 8 weeks) with streptozotocin injections (55 mg/kg) for 5 consecutive days. MSCs isolated from diabetic animals were preconditioned with medium from cardiomyocytes exposed to oxidative stress and high glucose (HG/H-CCM).
Results
Gene expression of VEGF, ANG-1, GATA-4, NKx2.5 MEF2c, PCNA, and eNOS was upregulated after preconditioning with HG/H-CCM, as evidenced by reverse transcriptase/polymerase chain reaction (RT-PCR). Concurrently, increased AKT phosphorylation, proliferation, angiogenic ability, and reduced levels of apoptosis were observed in HG/H-CCM-preconditioned diabetic MSCs compared with nontreated controls. HG/H-CCM-preconditioned diabetic-mouse-derived MSCs (dmMSCs) were transplanted in diabetic animals and demonstrated increased homing concomitant with augmented heart function. Gene expression of angiogenic and cardiac markers was significantly upregulated in conjunction with paracrine factors (IGF-1, HGF, SDF-1, FGF-2) and, in addition, reduced fibrosis, apoptosis, and increased angiogenesis was observed in diabetic hearts 4 weeks after transplantation of preconditioned dmMSCs compared with hearts with nontreated diabetic MSCs.
Conclusions
Preconditioning with HG/H-CCM enhances survival, proliferation, and the angiogenic ability of dmMSCs, augmenting their ability to improve function in a diabetic heart.
doi:10.1186/scrt207
PMCID: PMC3707006  PMID: 23706645
Mesenchymal stem cells; Diabetic heart; Preconditioning; Oxidative stress
4.  Stromal cell derived factor-1alpha protects stem cell derived insulin-producing cells from glucotoxicity under high glucose conditions in-vitro and ameliorates drug induced diabetes in rats 
Background
Diabetes mellitus is affecting more than 300 million people worldwide. Current treatment strategies cannot prevent secondary complications. Stem cells due to their regenerative power have long been the attractive target for the cell-based therapies. Mesenchymal stem cells (MSCs) possess the ability to differentiate into several cell types and to escape immune recognition in vitro. MSCs can be differentiated into insulin-producing cells (IPCs) and could be an exciting therapy for diabetes but problems like poor engraftment and survivability need to be confronted. It was hypothesized that stromal cell derived factor- 1alpha (SDF-1alpha) will enhance therapeutic potential of stem cell derived IPCs by increasing their survival and proliferation rate.
Methods
Novel culture conditions were developed to differentiate bone marrow derived mesenchymal stem cells (BMSCs) into IPCs by using endocrine differentiation inducers and growth factors via a three stage protocol. In order to enhance their therapeutic potential, we preconditioned IPCs with SDF-1alpha.
Results
Our results showed that SDF-1alpha increases survival and proliferation of IPCs and protects them from glucotoxicity under high glucose conditions in vitro. SDF-1alpha also enhances the glucose responsive insulin secretion in IPCs in vitro. SDF-1alpha preconditioning reverses hyperglycemia and increase serum insulin in drug induced diabetic rats.
Conclusions
The differentiation of BMSCs into IPCs and enhancement of their therapeutic potential by SDF-1alpha preconditioning may contribute to cell based therapies for diabetes.
doi:10.1186/1479-5876-11-115
PMCID: PMC3660237  PMID: 23648189
Diabetes mellitus; Mesenchymal stem cells; Differentiation; Preconditioning; SDF-1α
6.  Mutations in CIB2, a calcium and integrin binding protein, cause Usher syndrome type 1J and nonsyndromic deafness DFNB48 
Nature genetics  2012;44(11):1265-1271.
Sensorineural hearing loss is genetically heterogeneous. Here we report that mutations in CIB2, encoding a Ca2+- and integrin-binding protein, are associated with nonsyndromic deafness (DFNB48) and Usher syndrome type 1J (USH1J). There is one mutation of CIB2 that is a prevalent cause of DFNB48 deafness in Pakistan; other CIB2 mutations contribute to deafness elsewhere in the world. In rodents, CIB2 is localized in the mechanosensory stereocilia of inner ear hair cells and in retinal photoreceptor and pigmented epithelium cells. Consistent with molecular modeling predictions of Ca2+ binding, CIB2 significantly decreased the ATP-induced Ca2+ responses in heterologous cells, while DFNB48 mutations altered CIB2 effects on Ca2+ responses. Furthermore, in zebrafish and Drosophila, CIB2 is essential for the function and proper development of hair cells and retinal photoreceptor cells. We show that CIB2 is a new member of the vertebrate Usher interactome.
doi:10.1038/ng.2426
PMCID: PMC3501259  PMID: 23023331
7.  Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice 
Background
Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy for liver fibrosis. Issues concerning poor MSC survival and engraftment in the fibrotic liver still persist and warrant development of a strategy to increase MSC potency for liver repair. The present study was designed to examine a synergistic role for Interleukin-6 (IL-6) and MSCs therapy in the recovery of carbon tetrachloride (CCl4) induced injured hepatocytes in vitro and in vivo.
Methods
Injury was induced through 3 mM and 5 mM CCl4 treatment of cultured hepatocytes while fibrotic mouse model was established by injecting 0.5 ml/kg CCl4 followed by treatment with IL-6 and MSCs. Effect of MSCs and IL-6 treatment on injured hepatocytes was determined by lactate dehydrogenase release, RT-PCR for (Bax, Bcl-xl, Caspase3, Cytokeratin 8, NFκB, TNF-α) and annexin V apoptotic detection. Analysis of MSC and IL-6 treatment on liver fibrosis was measured by histopathology, PAS, TUNEL and Sirius red staining, RT-PCR, and liver function tests for Bilirubin and Alkaline Phosphatase (ALP).
Results
A significant reduction in LDH release and apoptosis was observed in hepatocytes treated with a combination of MSCs and IL-6 concomitant with upregulation of anti-apoptotic gene Bcl-xl expression and down regulation of bax, caspase3, NFκB and TNF-α. Adoptive transfer of MSCs in fibrotic liver pretreated with IL-6 resulted increased MSCs homing and reduced fibrosis and apoptosis. Hepatic functional assessment demonstrated reduced serum levels of Bilirubin and ALP.
Conclusion
Pretreatment of fibrotic liver with IL-6 improves hepatic microenvironment and primes it for MSC transplantation leading to enhanced reduction of liver injury after fibrosis. Synergistic effect of IL-6 and MSCs seems a favored therapeutic option in attenuation of liver apoptosis and fibrosis accompanied by improved liver function.
doi:10.1186/1479-5876-11-78
PMCID: PMC3636128  PMID: 23531302
Mesenchymal stem cells; Liver fibrosis; Hepatocytes; Interleukin-6
8.  Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment 
Background
Ischemia is the major cause of acute kidney injury (AKI), associated with high mortality and morbidity. Mesenchymal stem cells (MSCs) have multilineage differentiation potential and can be a potent therapeutic option for the cure of AKI.
Methods
MSCs were cultured in four groups SNAP (S-nitroso N-acetyl penicillamine), SNAP + Methylene Blue (MB), MB and a control for in vitro analysis. Cultured MSCs were pre-conditioned with either SNAP (100 μM) or MB (1 μM) or both for 6 hours. Renal ischemia was induced in four groups (as in in vitro study) of rats by clamping the left renal padicle for 45 minutes and then different pre-conditioned stem cells were transplanted.
Results
We report that pre-conditioning of MSCs with SNAP enhances their proliferation, survival and engraftment in ischemic kidney. Rat MSCs pre-conditioned with SNAP decreased cell apoptosis and increased proliferation and cytoprotective genes’ expression in vitro. Our in vivo data showed enhanced survival and engraftment, proliferation, reduction in fibrosis, significant improvement in renal function and higher expression of pro-survival and pro-angiogenic factors in ischemic renal tissue in SNAP pre-conditioned group of animals. Cytoprotective effects of SNAP pre-conditioning were abrogated by MB, an inhibitor of nitric oxide synthase (NOS) and guanylate cyclase.
Conclusion
The results of these studies demonstrate that SNAP pre-conditioning might be useful to enhance therapeutic potential of MSCs in attenuating renal ischemia reperfusion injury.
doi:10.1186/1479-5876-10-243
PMCID: PMC3543338  PMID: 23217165
MSCs; SNAP; Pre-conditioning; Renal ischemia; Cytoprotective factors
9.  Association of Pathogenic Mutations in TULP1 With Retinitis Pigmentosa in Consanguineous Pakistani Families 
Archives of ophthalmology  2011;129(10):1351-1357.
Objective
To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa in 5 consanguineous Pakistani families.
Methods
Affected individuals in the families underwent a detailed ophthalmological examination that consisted of fundus photography and electroretinography. Blood samples were collected from all participating family members, and genomic DNA was extracted. A genome-wide linkage scan was performed, followed by exclusion analyses among our cohort of nuclear consanguineous families with microsatellite markers spanning the TULP1 locus on chromosome 6p. Two-point logarithm of odds scores were calculated, and all coding exons of TULP1 were sequenced bidirectionally.
Results
The results of ophthalmological examinations among affected individuals in these 5 families were suggestive of retinitis pigmentosa. The genome-wide linkage scan localized the disease interval to chromosome 6p, harboring TULP1 in 1 of 5 families, and sequential analyses identified a single base pair substitution in TULP1 that results in threonine to alanine substitution (p.T380A). Subsequently, we investigated our entire cohort of families with autosomal recessive retinitis pigmentosa and identified 4 additional families with linkage to chromosome 6p, all of them harboring a single base pair substitution in TULP1 that results in lysine to arginine substitution (p.K489R). Results of single-nucleotide polymorphism haplotype analyses were suggestive of a common founder in these 4 families.
Conclusion
Pathogenic mutations in TULP1 are responsible for the autosomal recessive retinitis pigmentosa phenotype in these consanguineous Pakistani families, with a single ancestral mutation in TULP1 causing the disease phenotype in 4 of 5 families.
Clinical Relevance
Clinical and molecular characterization of pathogenic mutations in TULP1 will increase our understanding of retinitis pigmentosa at a molecular level.
doi:10.1001/archophthalmol.2011.267
PMCID: PMC3463811  PMID: 21987678
10.  Mutations in RLBP1 associated with fundus albipunctatus in consanguineous Pakistani families 
The British journal of ophthalmology  2011;95(7):1019-1024.
Objective
To identify disease-causing mutations in two consanguineous Pakistani families with fundus albipunctatus.
Methods
Affected individuals in both families underwent a thorough clinical examination including funduscopy and electroretinography. Blood samples were collected from all participating members and genomic DNA was extracted. Exclusion analysis was completed with microsatellite short tandem repeat markers that span all reported loci for fundus albipunctatus. Two-point logarithm of odds (LOD) scores were calculated, and coding exons and exon–intron boundaries of RLBP1 were sequenced bi-directionally.
Results
The ophthalmic examination of affected patients in both families was consistent with fundus albipunctatus. The alleles of markers on chromosome 15q flanking RLBP1 segregated with the disease phenotype in both families and linkage was further confirmed by two-point LOD scores. Bi-directional sequencing of RLBP1 identified a nonsense mutation (R156X) and a missense mutation (G116R) that segregated with the disease phenotype in their respective families.
Conclusions
These results strongly suggest that mutations in RLBP1 are responsible for fundus albipunctatus in the affected individuals of these consanguineous Pakistani families.
doi:10.1136/bjo.2010.189076
PMCID: PMC3459316  PMID: 21447491
11.  GNAT1 Associated with Autosomal Recessive Congenital Stationary Night Blindness 
Congenital stationary night blindness is characterized by impaired night vision, decreased visual acuity, nystagmus, myopia, and strabismus. A genome-wide linkage scan was completed that localized the critical interval to the short arm of chromosome 3 and sequencing identified a novel missense mutation in GNAT1.
Purpose.
Congenital stationary night blindness is a nonprogressive retinal disorder manifesting as impaired night vision and is generally associated with other ocular symptoms, such as nystagmus, myopia, and strabismus. This study was conducted to further investigate the genetic basis of CSNB in a consanguineous Pakistani family.
Methods.
A consanguineous family with multiple individuals manifesting cardinal symptoms of congenital stationary night blindness was ascertained. All family members underwent detailed ophthalmic examination, including fundus photographic examination and electroretinography. Blood samples were collected and genomic DNA was extracted. Exclusion and genome-wide linkage analyses were completed and two-point LOD scores were calculated. Bidirectional sequencing of GNAT1 was completed, and quantitative expression of Gnat1 transcript levels were investigated in ocular tissues at different postnatal intervals.
Results.
The results of ophthalmic examinations were suggestive of early-onset stationary night blindness with no extraocular anomalies. The genome-wide scan localized the critical interval to chromosome 3, region p22.1-p14.3, with maximum two-point LOD scores of 3.09 at θ = 0, flanked by markers D3S3522 and D3S1289. Subsequently, a missense mutation in GNAT1, p.D129G, was identified, which segregated within the family, consistent with an autosomal recessive mode of inheritance, and was not present in 192 ethnically matched control chromosomes. Expression analysis suggested that Gnat1 is expressed at approximately postnatal day (P)7 and is predominantly expressed in the retina.
Conclusions.
These data suggest that a homozygous missense mutation in GNAT1 is associated with autosomal recessive stationary night blindness.
doi:10.1167/iovs.11-8026
PMCID: PMC3339909  PMID: 22190596
12.  Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans 
Nature Genetics  2008;40(11):1335-1340.
Many proteins necessary for sound transduction have been discovered through positional cloning of genes that cause deafness1–3. In this study, we report that mutations of LRTOMT are associated with profound non-syndromic hearing loss at the DFNB63 locus on human chromosome 11q13.3-q13.4. LRTOMT has two alternative reading frames and encodes two different proteins, LRTOMT1 and LRTOMT2, that are detected by Western blot analyses. LRTOMT2 is a putative methyltransferase. During evolution, novel transcripts can arise through partial or complete coalescence of genes4. We provide evidence that in the primate lineage LRTOMT evolved from the fusion of two neighboring ancestral genes, which exist as separate genes (Lrrc51and Tomt) in rodents.
doi:10.1038/ng.245
PMCID: PMC3404732  PMID: 18953341
13.  A Novel Locus for Autosomal Recessive Retinitis Pigmentosa in a Consanguineous Pakistani Family Maps to Chromosome 2p 
American Journal of Ophthalmology  2010;149(5):861-866.
OBJECTIVE
To identify a disease locus for autosomal recessive retinitis pigmentosa in a consanguineous Pakistani family.
DESIGN
Prospective linkage study.
METHODS
Blood samples were collected and genomic DNA was extracted. A genome-wide scan was performed using 382 polymorphic microsatellite markers on genomic DNA from 4 affected and 5 unaffected family members, and logarithm of odds scores were calculated.
RESULTS
A maximum 2-point logarithm of odds score of 3.14 at θ = 0 was obtained for marker D2S165 during the genome-wide scan. Fine mapping markers identified a 20.92-cM (19.98-Mb) interval flanked by D2S149 and D2S367 that cosegregates with the disease phenotype. Haplotype analyses further refined the critical interval, distal to D2S220 in a 12.31-cM (13.35-Mb) region that does not harbor any genes that previously have been associated with retinitis pigmentosa.
CONCLUSIONS
Linkage analysis identified a new locus for autosomal recessive retinitis pigmentosa that maps to chromosome 2p22.3-p24.1 in a consanguineous Pakistani family.
doi:10.1016/j.ajo.2009.12.034
PMCID: PMC3399686  PMID: 20227676
14.  Ectopia Lentis in a Consanguineous Pakistani Family and a Novel Locus on Chromosome 8q 
Archives of Ophthalmology  2010;128(8):1046-1049.
Objective
To investigate the genetic basis and molecular characteristics of the isolated form of ectopia lentis.
Methods
We ascertained a consanguineous Pakistani family with multiple individuals with ectopia lentis. All affected as well as unaffected members with isolated ectopia lentis underwent detailed ophthalmologic and medical examination. Blood samples were collected and DNA was extracted. A genome-wide scan was completed with 382 polymorphic microsatellite markers, and logarithm of odds (LOD) scores were calculated.
Results
Maximum 2-point LOD scores of 5.68 and 2.88 at θ=0 were obtained for markers D8S285 and D8S260, respectively, during the genome-wide scan. Additional microsatellite markers refined the disease locus to a 16.96-cM (14.07-Mb) interval flanked by D8S1737 proximally and D8S1117 distally.
Conclusions
We report on a new locus for nonsyndromic autosomal recessive ectopia lentis on chromosome 8q11.23-q13.2 in a consanguineous Pakistani family.
Clinical Relevance
Identification of genetic loci and genes involved in ectopia lentis will enhance our understanding of the disease at a molecular level, leading to better genetic counseling and family screening and possible future development of better treatment.
doi:10.1001/archophthalmol.2010.165
PMCID: PMC3398798  PMID: 20697006
15.  Nonsense mutation in MERTK causes autosomal recessive retinitis pigmentosa in a consanguineous Pakistani family 
The British Journal of Ophthalmology  2010;94(8):1094-1099.
Background
Retinitis pigmentosa (RP) is one of the most common ophthalmic disorders affecting one in approximately 5000 people worldwide. A nuclear family was recruited from the Punjab province of Pakistan to study the genetic basis of autosomal recessive RP.
Methods
All affected individuals underwent a thorough ophthalmic examination and the disease was characterised based upon results for fundus photographs and electroretinogram recordings. Genomic DNA was extracted from peripheral leucocytes. Exclusion studies were performed with short tandem repeat (STR) markers flanking reported autosomal recessive RP loci. Haplotypes were constructed and results were statistically evaluated.
Results
The results of exclusion analyses suggested that family PKRP173 was linked to chromosome 2q harbouring mer tyrosine kinase protooncogene (MERTK), a gene previously associated with autosomal recessive RP. Additional STR markers refined the critical interval and placed it in a 13.4 cM (17 Mb) region flanked by D2S293 proximally and D2S347 distally. Significant logarithm of odds (LOD) scores of 3.2, 3.25 and 3.18 at θ=0 were obtained with markers D2S1896, D2S2269 and D2S160. Sequencing of the coding exons of MERTK identified a mutation, c.718G→T in exon 4, which results in a premature termination of p.E240X that segregates with the disease phenotype in the family.
Conclusion
Our results strongly suggest that the nonsense mutation in MERTK, leading to premature termination of the protein, is responsible for RP phenotype in the affected individuals of the Pakistani family.
doi:10.1136/bjo.2009.171892
PMCID: PMC3393880  PMID: 20538656
16.  Nitric oxide augments mesenchymal stem cell ability to repair liver fibrosis 
Background
Liver fibrosis is a major health problem worldwide and poses a serious obstacle for cell based therapies. Mesenchymal stem cells (MSCs) are multipotent and important candidate cells for future clinical applications however success of MSC therapy depends upon their homing and survival in recipient organs. This study was designed to improve the repair potential of MSCs by transplanting them in sodium nitroprusside (SNP) pretreated mice with CCl4 induced liver fibrosis.
Methods
SNP 100 mM, a nitric oxide (NO) donor, was administered twice a week for 4 weeks to CCl4-injured mice. MSCs were isolated from C57BL/6 wild type mice and transplanted in the left lateral lobe of the liver in experimental animals. After 4 weeks, animals were sacrificed and liver improvement was analyzed. Analysis of fibrosis by qRT-PCR and sirius red staining, homing, bilirubin and alkaline phosphatase (ALP) serum levels between different treatment groups were compared to control.
Results
Liver histology demonstrated enhanced MSCs homing in SNP-MSCs group compared to MSCs group. The gene expression of fibrotic markers; αSMA, collagen 1α1, TIMP, NFκB and iNOS was down regulated while cytokeratin 18, albumin and eNOS was up-regulated in SNP-MSCs group. Combine treatment sequentially reduced fibrosis in SNP-MSCs treated liver compared to the other treatment groups. These results were also comparable with reduced serum levels of bilirubin and ALP observed in SNP-MSCs treated group.
Conclusion
This study demonstrated that NO effectively augments MSC ability to repair liver fibrosis induced by CCl4 in mice and therefore is a better treatment regimen to reduce liver fibrosis.
doi:10.1186/1479-5876-10-75
PMCID: PMC3419634  PMID: 22533821
Liver fibrosis; Mesenchymal stem cells (MSCs); Hepatic stellate cells (HSCs); Nitric oxide
17.  Mutations of GIPC3 cause nonsyndromic hearing loss DFNB72 but not DFNB81 that also maps to chromosome 19p 
Human Genetics  2011;130(6):759-765.
A missense mutation of Gipc3 was previously reported to cause age-related hearing loss in mice. Point mutations of human GIPC3 were found in two small families, but association with hearing loss was not statistically significant. Here, we describe one frameshift and six missense mutations in GIPC3 cosegregating with DFNB72 hearing loss in six large families that support statistically significant evidence for genetic linkage. However, GIPC3 is not the only nonsyndromic hearing impairment gene in this region; no GIPC3 mutations were found in a family cosegregating hearing loss with markers of chromosome 19p. Haplotype analysis excluded GIPC3 from the obligate linkage interval in this family and defined a novel locus spanning 4.08 Mb and 104 genes. This closely linked but distinct nonsyndromic hearing loss locus was designated DFNB81.
doi:10.1007/s00439-011-1018-5
PMCID: PMC3303183  PMID: 21660509
18.  Molecular and Clinical Studies of X-linked Deafness Among Pakistani Families 
Journal of human genetics  2011;56(7):534-540.
There are 68 sex-linked syndromes that include hearing loss as one feature and five sex-linked nonsyndromic deafness loci listed in the OMIM database. The possibility of additional such sex-linked loci was explored by ascertaining three unrelated Pakistani families (PKDF536, PKDF1132, PKDF740) segregating X-linked recessive deafness. Sequence analysis of POU3F4 (DFN3) in affected members of families PKDF536 and PKDF1132 revealed two novel nonsense mutations, p.Q136X and p.W114X, respectively. Family PKDF740 is segregating congenital blindness, mild to profound progressive hearing loss that is characteristic of Norrie disease (MIM#310600). Sequence analysis of NDP among affected members of this family revealed a novel single nucleotide deletion c.49delG causing a frameshift and premature truncation (p.V17fsX1) of the encoded protein. These mutations were not found in 150 normal DNA samples. Identification of pathogenic alleles causing X-linked recessive deafness will improve molecular diagnosis, genetic counseling, and molecular epidemiology of hearing loss among Pakistanis.
doi:10.1038/jhg.2011.55
PMCID: PMC3143270  PMID: 21633365
DFN3; Norrie disease; POU3F4; NDP; hearing loss; gushers
19.  Molecular Analysis of Bardet-Biedl Syndrome Families: Report of 21 Novel Mutations in 10 Genes 
The authors describe the screening of 55 families of European, Tunisian, and Arab descent for mutations in 15 BBS and 5 additional ciliopathy genes. The spectrum of mutations is described with a discussion of possible third-allele effects.
Purpose.
Bardet-Biedl syndrome (BBS) is genetically heterogeneous with 15 BBS genes currently identified, accounting for approximately 70% of cases. The aim of our study was to define further the spectrum of BBS mutations in a cohort of 44 European-derived American, 8 Tunisian, 1 Arabic, and 2 Pakistani families (55 families in total) with BBS.
Methods.
A total of 142 exons of the first 12 BBS-causing genes were screened by dideoxy sequencing. Cases in which no mutations were found were then screened for BBS13, BBS14, BBS15, RPGRIP1L, CC2D2A, NPHP3, TMEM67, and INPP5E.
Results.
Forty-three mutations, including 8 frameshift mutations, 10 nonsense mutations, 4 splice site mutations, 1 deletion, and 20 potentially or probably pathogenic missense variations, were identified in 46 of the 55 families studied (84%). Of these, 21 (2 frameshift mutations, 4 nonsense mutations, 4 splice site mutations, 1 deletion, and 10 missense variations) were novel. The molecular genetic findings raised the possibility of triallelic inheritance in 7 Caucasian families, 1 Arabian family, and 1 Tunisian patient. No mutations were detected for BBS4, BBS11, BBS13, BBS14, BBS15, RPGRIP1L, CC2D2A, NPHP3, TMEM67, or INPP5E.
Conclusions.
This mutational analysis extends the spectrum of known BBS mutations. Identification of 21 novel mutations highlights the genetic heterogeneity of this disorder. Differences in European and Tunisian patients, including the high frequency of the M390R mutation in Europeans, emphasize the population specificity of BBS mutations with potential diagnostic implications. The existence of some BBS cases without mutations in any currently identified BBS genes suggests further genetic heterogeneity.
doi:10.1167/iovs.11-7554
PMCID: PMC3176075  PMID: 21642631
20.  Huh-7 cell line as an alternative cultural model for the production of human like erythropoietin (EPO) 
Background and Aims
Erythropoietin (EPO) is a glycoprotein hormone which is required to regulate the production of red blood cells. Deficiency of EPO is known to cause anemia in chronically infected renal patients and they require regular blood transfusion. Availability of recombinant EPO has eliminated the need for blood transfusion and now it is extensively used for the treatment of anemia. Glycosylation of erythropoietin is essential for its secretion, stability, protein conformation and biological activity. However, maintenance of human like glycosylation pattern during manufacturing of EPO is a major challenge in biotechnology. Currently, Chinese hamster ovary (CHO) cell line is used for the commercial production of erythropoietin but this cell line does not maintain glycosylation resembling human system. With the trend to eliminate non-human constituent from biopharmaceutical products, as a preliminary approach, we have investigated the potential of human hepatoma cell line (Huh-7) to produce recombinant EPO.
Materials and methods
Initially, the secretory signal and Kozak sequences was added before the EPO mature protein sequence using overlap extension PCR technique. PCR-amplified cDNA fragments of EPO was inserted into mammalian expression vector under the control of the cytomegalovirus (CMV) promoter and transiently expressed in CHO and Huh-7 cell lines. After RT-PCR analysis, ELISA and Western blotting was performed to verify the immunochemical properties of secreted EPO.
Results
Addition of secretory signal and Kozak sequence facilitated the extra-cellular secretion and enhanced the expression of EPO protein. Significant expression (P < 0.05) of EPO was observed in the medium from Huh-7 cell line.
Conclusion
Huh-7 cell line has a great potential to produce glycosylated EPO, suggesting the use of this cell line to produce glycoproteins of the therapeutic importance resembling to the natural human system.
doi:10.1186/1479-5876-9-186
PMCID: PMC3228713  PMID: 22040235
EPO; erythropoietin; CHO; Chinese hamster ovary cell line; Huh-7; Human hepatoma cell line; PCR; polymerase chain reaction
21.  Identification of an autosomal recessive stuttering locus on chromosome 3q13.2–3q13.33 
Human genetics  2010;128(4):461-463.
Stuttering is a common speech disorder with substantial genetic contributions. To better understand the genetic factors involved in stuttering, we performed a genome-wide linkage study in a newly-ascertained consanguineous stuttering family from Pakistan. A linkage scan in this family using parametric linkage analysis revealed significant linkage only on chromosome 3q13.2–3q13.33, with a maximum two-point LOD score of 4.23 under an autosomal recessive model of inheritance.
doi:10.1007/s00439-010-0871-y
PMCID: PMC3030966  PMID: 20706738
22.  CD44 is a Marker for the Outer Pillar Cells in the Early Postnatal Mouse Inner Ear 
Cluster of differentiation antigens (CD proteins) are classically used as immune cell markers. However, their expression within the inner ear is still largely undefined. In this study, we explored the possibility that specific CD proteins might be useful for defining inner ear cell populations. mRNA expression profiling of microdissected auditory and vestibular sensory epithelia revealed 107 CD genes as expressed in the early postnatal mouse inner ear. The expression of 68 CD genes was validated with real-time RT-PCR using RNA extracted from microdissected sensory epithelia of cochleae, utricles, saccules, and cristae of newborn mice. Specifically, CD44 was identified as preferentially expressed in the auditory sensory epithelium. Immunohistochemistry revealed that within the early postnatal organ of Corti, the expression of CD44 is restricted to outer pillar cells. In order to confirm and expand this finding, we characterized the expression of CD44 in two different strains of mice with loss- and gain-of-function mutations in Fgfr3 which encodes a receptor for FGF8 that is essential for pillar cell development. We found that the expression of CD44 is abolished from the immature pillar cells in homozygous Fgfr3 knockout mice. In contrast, both the outer pillar cells and the aberrant Deiters’ cells in the Fgfr3P244R/+ mice express CD44. The deafness phenotype segregating in DFNB51 families maps to a linkage interval that includes CD44. To study the potential role of CD44 in hearing, we characterized the auditory system of CD44 knockout mice and sequenced the entire open reading frame of CD44 of affected members of DFNB51 families. Our results suggest that CD44 does not underlie the deafness phenotype of the DFNB51 families. Finally, our study reveals multiple potential new cell type-specific markers in the mouse inner ear and identifies a new marker for outer pillar cells.
Electronic supplementary material
The online version of this article (doi:10.1007/s10162-010-0211-x) contains supplementary material, which is available to authorized users.
doi:10.1007/s10162-010-0211-x
PMCID: PMC2914240  PMID: 20386946
CD44; FGFR3; cochlea; outer pillar cells; deafness
23.  Glycyrrhizin as antiviral agent against Hepatitis C Virus 
Background
Hepatitis C virus is a major cause of chronic liver diseases which can lead to permanent liver damage, hepatocellular carcinoma and death. The presently available treatment with interferon plus ribavirin, has limited benefits due to adverse side effects such as anemia, depression, fatigue, and "flu-like" symptoms. Herbal plants have been used for centuries against different diseases including viral diseases and have become a major source of new compounds to treat bacterial and viral diseases.
Material
The present study was design to study the antiviral effect of Glycyrrhizin (GL) against HCV. For this purpose, HCV infected liver cells were treated with GL at non toxic doses and HCV titer was measured by Quantitative real time RT-PCR.
Results and Discussion
Our results demonstrated that GL inhibit HCV titer in a dose dependent manner and resulted in 50% reduction of HCV at a concentration of 14 ± 2 μg. Comparative studies were made with interferon alpha to investigate synergistic effects, if any, between antiviral compound and interferon alpha 2a. Our data showed that GL exhibited synergistic effect when combined with interferon. Moreover, these results were verified by transiently transfecting the liver cells with HCV 3a core plasmid. The results proved that GL dose dependently inhibit the expression of HCV 3a core gene both at mRNA and protein levels while the GAPDH remained constant.
Conclusion
Our results suggest that GL inhibit HCV full length viral particles and HCV core gene expression or function in a dose dependent manner and had synergistic effect with interferon. In future, GL along with interferon will be better option to treat HCV infection.
doi:10.1186/1479-5876-9-112
PMCID: PMC3169469  PMID: 21762538
24.  Actin-Bundling Protein TRIOBP Forms Resilient Rootlets of Hair Cell Stereocilia That Are Essential for Hearing 
Cell  2010;141(5):786-798.
SUMMARY
Inner ear hair cells detect sound through deflection of mechanosensory stereocilia. Each stereocilium is supported by a paracrystalline array of parallel actin filaments that are packed more densely at the base, forming a rootlet extending into the cell body. The function of rootlets and the molecules responsible for their formation are unknown. We found that TRIOBP, a cytoskeleton-associated protein mutated in human hereditary deafness DFNB28, is localized to rootlets. In vitro, purified TRIOBP isoform 4 protein organizes actin filaments into uniquely dense bundles reminiscent of rootlets, but distinct from bundles formed by espin, an actin cross-linker in stereocilia. We generated mutant Triobp mice (TriobpΔex8/Δex8) that are profoundly deaf. Stereocilia of TriobpΔex8/Δex8 mice develop normally, but fail to form rootlets and are easier to deflect and damage. Thus, F-actin bundling by TRIOBP provides durability and rigidity for normal mechanosensitivity of stereocilia and may contribute to resilient cytoskeletal structures elsewhere.
doi:10.1016/j.cell.2010.03.049
PMCID: PMC2879707  PMID: 20510926
25.  Inhibition of Hepatitis C Virus 3a genotype entry through Glanthus Nivalis Agglutinin 
Virology Journal  2011;8:248.
Background
Hepatitis C Virus (HCV) has two envelop proteins E1 and E2 which is highly glycosylated and play an important role in cell entry. Inhibition of virus at entry step is an important target to find antiviral drugs against HCV. Glanthus Nivalis Agglutinin (GNA) is a mannose binding lectin which has tendency for specific recognition and reversible binding to the sugar moieties of a wide variety of glycoproteins of enveloped viruses.
Results
In the present study, HCV pseudoparticles (HCVpp) for genotype 3a were produced to investigate the ability of GNA to block the HCV entry. The results demonstrated that GNA inhibit the infectivity of HCVpp and HCV infected serum in a dose-dependent manner and resulted in 50% reduction of virus at 1 ± 2 μg concentration. Molecular docking of GNA and HCV glycoproteins (E1 and E2) showed that GNA inhibit HCV entry by binding N-linked glycans.
Conclusion
These results demonstrated that targeting the HCV glycans is a new approach to develop antiviral drugs against HCV.
doi:10.1186/1743-422X-8-248
PMCID: PMC3117843  PMID: 21599979

Results 1-25 (57)