PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Riau, andré")
1.  LASIK following Small Incision Lenticule Extraction (SMILE) Lenticule Re-Implantation: A Feasibility Study of a Novel Method for Treatment of Presbyopia 
PLoS ONE  2013;8(12):e83046.
Presbyopia remains a major visual impairment for patients, who have previously undergone laser refractive correction and enjoyed unaided distance vision prior to the onset of presbyopia. Corneal stromal volume restoration through small incision lenticule extraction (SMILE) lenticule re-implantation presents an opportunity for restoring the patients’ non-dominant eye to previous low myopia to achieve a monovision. In this study, we investigated the feasibility of performing LASIK after lenticule re-implantation as a method to create presbyopic monovision. A -6.00D SMILE correction was performed in 9 rabbit eyes. The lenticules were cryopreserved for 14 days and re-implanted. Five weeks later, 3 of these eyes underwent LASIK for -5.00D correction (RL group); 3 underwent LASIK flap creation, which was not lifted (RN); and no further procedures were performed on the remaining 3 eyes. These groups were compared with 3 eyes that underwent standard LASIK for a -5.00D correction (LO); 3 that underwent creation of non-lifted flap (LN); and 3 non-operated eyes. Rabbits were euthanized 1 day post-surgery. Tissue responses were analyzed by immunohistochemistry, slit lamp and in vivo confocal microscopy (IVCM). Intrastromal irregularities and elevated reflectivity levels of the excimer-ablated plane were observed on slit lamp and IVCM, respectively in the RL group. The results were comparable (P = 0.310) to IVCM findings in the LO group. RL and LO groups showed similar fibronectin expression levels, number of CD11b-positive cells (P = 0.304) and apoptotic cells (P = 0.198). There was no difference between the RN and LN groups in reflectivity levels (P = 0.627), fibronectin expression levels, CD11b-positive cells (P = 0.135) and apoptotic cells (P = 0.128). LASIK can be performed following lenticule re-implantation to create presbyopic monovision. The tissue responses elicited after performing LASIK on corneas that have undergone SMILE and subsequent lenticule re-implantation are similar to primary procedure.
doi:10.1371/journal.pone.0083046
PMCID: PMC3859649  PMID: 24349429
2.  Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases 
Human Molecular Genetics  2013;22(22):4579-4590.
Three genetic corneal dystrophies [congenital hereditary endothelial dystrophy type 2 (CHED2), Harboyan syndrome and Fuchs endothelial corneal dystrophy] arise from mutations of the SLC4a11 gene, which cause blindness from fluid accumulation in the corneal stroma. Selective transmembrane water conductance controls cell size, renal fluid reabsorption and cell division. All known water-channelling proteins belong to the major intrinsic protein family, exemplified by aquaporins (AQPs). Here we identified SLC4A11, a member of the solute carrier family 4 of bicarbonate transporters, as an unexpected addition to known transmembrane water movement facilitators. The rate of osmotic-gradient driven cell-swelling was monitored in Xenopus laevis oocytes and HEK293 cells, expressing human AQP1, NIP5;1 (a water channel protein from plant), hCNT3 (a human nucleoside transporter) and human SLC4A11. hCNT3-expressing cells swelled no faster than control cells, whereas SLC4A11-mediated water permeation at a rate about half that of some AQP proteins. SLC4A11-mediated water movement was: (i) similar to some AQPs in rate; (ii) uncoupled from solute-flux; (iii) inhibited by stilbene disulfonates (classical SLC4 inhibitors); (iv) inactivated in one CHED2 mutant (R125H). Localization of AQP1 and SLC4A11 in human and murine corneal (apical and basolateral, respectively) suggests a cooperative role in mediating trans-endothelial water reabsorption. Slc4a11−/− mice manifest corneal oedema and distorted endothelial cells, consistent with loss of a water-flux. Observed water-flux through SLC4A11 extends the repertoire of known water movement pathways and call for a re-examination of explanations for water movement in human tissues.
doi:10.1093/hmg/ddt307
PMCID: PMC3889808  PMID: 23813972
3.  Reversible Femtosecond Laser-Assisted Myopia Correction: A Non-Human Primate Study of Lenticule Re-Implantation after Refractive Lenticule Extraction 
PLoS ONE  2013;8(6):e67058.
LASIK (laser-assisted in situ keratomileusis) is a common laser refractive procedure for myopia and astigmatism, involving permanent removal of anterior corneal stromal tissue by excimer ablation beneath a hinged flap. Correction of refractive error is achieved by the resulting change in the curvature of the cornea and is limited by central corneal thickness, as a thin residual stromal bed may result in biomechanical instability of the cornea. A recently developed alternative to LASIK called Refractive Lenticule Extraction (ReLEx) utilizes solely a femtosecond laser (FSL) to incise an intrastromal refractive lenticule (RL), which results in reshaping the corneal curvature and correcting the myopia and/or astigmatism. As the RL is extracted intact in the ReLEx, we hypothesized that it could be cryopreserved and re-implanted at a later date to restore corneal stromal volume, in the event of keratectasia, making ReLEx a potentially reversible procedure, unlike LASIK. In this study, we re-implanted cryopreserved RLs in a non-human primate model of ReLEx. Mild intrastromal haze, noted during the first 2 weeks after re-implantation, subsided after 8 weeks. Refractive parameters including corneal thickness, anterior curvature and refractive error indices were restored to near pre-operative values after the re-implantation. Immunohistochemistry revealed no myofibroblast formation or abnormal collagen type I expression after 8 weeks, and a significant attenuation of fibronectin and tenascin expression from week 8 to 16 after re-implantation. In addition, keratocyte re-population could be found along the implanted RL interfaces. Our findings suggest that RL cryopreservation and re-implantation after ReLEx appears feasible, suggesting the possibility of potential reversibility of the procedure, and possible future uses of RLs in treating other corneal disorders and refractive errors.
doi:10.1371/journal.pone.0067058
PMCID: PMC3691223  PMID: 23826194
4.  Reproducibility and age-related changes of ocular parametric measurements in rabbits 
Background
The rabbit is a common animal model for ophthalmic research, especially corneal research. Ocular structures grow rapidly during the early stages of life. It is unclear when the rabbit cornea becomes mature and stabilized. We investigated the changes of keratometry, refractive state and central corneal thickness (CCT) with age. In addition, we studied the intra- and inter-observer reproducibility of anterior chamber depth (ACD) and anterior chamber width (ACW) measurements in rabbits using anterior segment-optical coherence tomography (AS-OCT).
Results
The growth of New Zealand White rabbits (n = 16) were monitored from age 1 to 12 months old. Corneal keratometric and refractive values were obtained using an autorefractor/keratometer, and CCT was measured using an AS-OCT. Keratometry and CCT changed rapidly from 1 to 7 months and appeared to be stabilizing after 8 months. The reduction of corneal curvature was approximately 1.36 diopter (D)/month from age 1 to 7 months, but the change decelerated to 0.30 D/month from age 8 to 12 months. An increase of 10 μm/month in CCT was observed from age 1 to 7 months, but the gain was reduced to less than 1 μm/month from age 8 to 12 months. There was a hyperopic shift over the span of 12 months, albeit the increase in spherical equivalent was slow and gradual. Rabbits of random age were then selected for 2 repeated ACD and ACW measurements by 2 independent and masked observers. Bland-Altman plots revealed a good agreement of ACD and ACW measurements inter- and intra-observer and the ranges of 95% limit of agreement were acceptable from a clinical perspective.
Conclusions
Corneal keratometry, spherical equivalent refraction and CCT changed significantly during the first few months of life of rabbits. Young rabbits have been used in a large number of eye research studies. In certain settings, the ocular parametric changes are an important aspect to note as they may alter the findings made in a rabbit experimental model. In this study, we have also demonstrated for the first time a good between observer reproducibility of measurements of ocular parameters in an animal model by using an AS-OCT.
doi:10.1186/1746-6148-8-138
PMCID: PMC3514359  PMID: 22901963
Cornea; Rabbit; Refractive; Keratometry; Anterior chamber; Reproducibility
5.  Correction: Aberrant DNA Methylation of Matrix Remodeling and Cell Adhesion Related Genes in Pterygium 
PLoS ONE  2011;6(3):10.1371/annotation/814c14d4-eee6-44e2-bea8-cac11a0bae8f.
doi:10.1371/annotation/814c14d4-eee6-44e2-bea8-cac11a0bae8f
PMCID: PMC3050981
6.  Aberrant DNA Methylation of Matrix Remodeling and Cell Adhesion Related Genes in Pterygium 
PLoS ONE  2011;6(2):e14687.
Background
Pterygium is a common ocular surface disease characterized by abnormal epithelial and fibrovascular proliferation, invasion, and matrix remodeling. This lesion, which migrates from the periphery to the center of the cornea, impairs vision and causes considerable irritation. The mechanism of pterygium formation remains ambiguous, and current treatment is solely surgical excision, with a significant risk of recurrence after surgery. Here, we investigate the role of methylation in DNA sequences that regulate matrix remodeling and cell adhesion in pterygium formation.
Methodology/Principal Findings
Pterygium and uninvolved conjunctiva samples were obtained from the same eye of patients undergoing surgery. The EpiTYPER Sequenom technology, based on differential base cleavage and bisulfite sequencing was used to evaluate the extent of methylation of 29 matrix and adhesion related genes. In pterygium, three CpG sites at −268, −32 and −29 bp upstream of transglutaminase 2 (TGM-2) transcription initiation were significantly hypermethylated (p<0.05), whereas hypomethylation was detected at CpGs +484 and +602 bp downstream of matrix metalloproteinase 2 (MMP-2) transcription start site, and −809, −762, −631 and −629 bp upstream of the CD24 transcription start site. RT-qPCR, western blot and immunofluorescent staining showed that transcript and protein expression were reduced for TGM-2 and increased for MMP-2 and CD24. Inhibition of methylation in cultured conjunctival epithelial cells increased these transcripts.
Conclusions/Significance
We found regions of aberrant DNA methylation which were consistent with alteration of TGM-2, MMP-2, and CD24 transcript and protein expression, and that inhibition of methylation in cultured cells can increase the expression of these genes. Since these genes were related to cell adhesion and matrix remodeling, dysregulation may lead to fibroblastic and neovascular changes and pterygium formation. These results have implications for the prognostication of pterygium in clinical practice, for example, detection of epigenetic changes may have a role in predicting post surgical recurrence of aggressive lesions.
doi:10.1371/journal.pone.0014687
PMCID: PMC3040179  PMID: 21359202
7.  S100A expression in normal corneal-limbal epithelial cells and ocular surface squamous cell carcinoma tissue 
Molecular Vision  2011;17:2263-2271.
Purpose
To study the expression and cellular distribution of multiple S100A genes and proteins in normal corneal-limbal epithelium and ocular surface squamous cell carcinoma (SCC) tissue.
Methods
Normal corneal-limbal tissue was obtained from the Lions Eye Bank, Tampa, FL. Ocular surface SCC tissues were excised from patients undergoing surgery at Singapore National Eye Centre. S100A mRNA expression was measured by quantitative PCR. S100 protein distribution was determined by immunofluorescent staining analysis.
Results
Twelve S100 mRNAs were identified in human corneal and limbal epithelial cells. S100A2, A6, A8, A9, A10, and A11 mRNA was expressed at high level, while S100A1, A3, A4, A5, A6, A7, and A12 mRNA expression was low. The intracellular localization of S100A2, A6, A8, A9, A10 and A11 protein was determined in normal corneal-limbal and SCC tissues. S100A2 and S100A10 proteins were enriched in basal limbal epithelial cells of the normal tissue. S100A8 and S100A9 were found only at the surface of peripheral corneal and limbal epithelium. S100A6 was uniformly found at the plasma membrane of corneal and limbal epithelial cells. S100A11 was found at the supralayer limbal epithelial cells adjacent to the conjunctiva. SCC tissue showed typical pathological changes with expression of cytokeartin (CK) 14 and CK4 in the epithelial cells. All SCC epithelial cells were positive of S100A2, S100A10, S100A6 and S100A11 staining. Intracellular staining of S100A8 and S100A9 was found in several layers of SCC epithelium. Expression of S100A2 and S100A10 decreased dramatically in cultured limbal epithelial cells with increased passaging, which was accompanied by a small increase of S100A9 mRNA, with no changes of S100A8 gene expression. Serum and growth hormone depletion of the culture serum caused a small reduction of S100A2 and S100A10 gene expression, which was accompanied by a small increase of S100A9 mRNA while no changes of S100A8 expression was measured.
Conclusions
Normal corneal and limbal epithelial cells express a broad spectrum of S100 genes and proteins. Ocular surface SCC express high levels of S100A2, S100A10, S100A8 and S100A9 proteins. The expression of S100A2 and S100A10 is associated with limbal epithelial cell proliferation and differentiation.
PMCID: PMC3164687  PMID: 21897749
8.  Cornea lenticule viability and structural integrity after refractive lenticule extraction (ReLEx) and cryopreservation 
Molecular Vision  2011;17:3437-3449.
Purpose
To assess and compare keratocyte viability and collagen structure in cornea stroma lenticules collected immediately after refractive lenticule extraction (ReLEx) and one month after cryopreservation.
Methods
The fresh and cryopreserved human stroma lenticules procured after ReLEx were processed for ultrastructural analysis of keratocytes and collagen fibrils with transmission electron microscopy (TEM), apoptotic cell detection with deoxynucleotidyl transferase-mediated nick end labeling assay (TUNEL) assay, and cultured for keratocyte-specific gene expression analysis using reverse transcriptase polymerase chain reaction (RT–PCR).
Results
The periphery of the lenticule had greater TUNEL-positive cells compared to the center of the lenticule in both fresh and cryopreserved groups. There was an increase in TUNEL-positive cells after cryopreservation, which was significantly higher in the center of the lenticule, but not in the periphery. TEM showed apoptotic, necrotic and viable quiescent keratocytes in fresh and cryopreserved lenticules. Collagen analysis with TEM showed a well preserved and well aligned structure in fresh and cryopreserved lenticules; without significant change in the total number of collagen fibrils but with an increased collagen fibril density (CFD) after cryopreservation. In vitro, isolated keratocytes derived from fresh and cryopreserved lenticules exhibited a typical fibroblastic phenotype. RT–PCR showed a positive gene expression for keratocan (KERA) and aldehyde dehydrogenase 3A1 (ALDH3A1) in cells isolated from fresh and cryopreserved lenticules.
Conclusions
The stromal lenticules extracted from ReLEx surgery remain viable after cryopreservation. Although they showed a decrease in CFD, the collagen architecture was preserved and there was good cellular viability.
PMCID: PMC3249438  PMID: 22219639
9.  Calcium-binding S100 protein expression in pterygium 
Molecular Vision  2009;15:335-342.
Purpose
Pterygium is an ocular surface disease of unknown etiology associated with epithelial and fibrovascular outgrowth from the conjunctiva onto the cornea. S100 proteins are calcium-activated signaling proteins that interact with other proteins to modulate biological functions such as cell migration, proliferation, and differentiation. The aim of this study was to investigate the presence of various S100 proteins in pterygium compared to normal conjunctiva.
Methods
Immunofluorescent staining using antibodies against S100A4, S100A6, S100A8, S100A9, and S100A11 were conducted to investigate the expression and tissue distribution. S100 protein secretions and expressions were confirmed using western blot and quantitative real-time polymerase chain reaction (RT-PCR), respectively.
Results
Immunofluorescent staining demonstrated the presence of S100A4, S100A6, S100A8, S100A8, S100A9, and S100A11 in both conjunctival and pterygial epithelium. No significant difference was found in the localization and expression of S100A4. In both conjunctiva and pterygium, S100A4-positive cells were found in superficial and suprabasal layers. S100A6 expression was strong in the superficial layer of pterygium epithelium but relatively weaker in the suprabasal and superficial cells of normal conjunctiva epithelium. S100A8 and S100A9 were localized in the superficial layer of both pterygium and normal conjunctiva epithelium, with higher levels in pterygium than uninvolved conjunctiva. S100A11 was expressed in the basal cells of conjunctival epithelium but in the suprabasal layers of pterygium epithelium. Western blot and RT–PCR confirmed the presence of S100A4, S100A6, S100A8, S100A9, and S100A11 in pterygium and conjunctiva tissue.
Conclusions
Higher levels of S100A6, S100A8, and S100A9 expressions were detected in the pterygium tissue relative to normal conjunctiva. In addition, a distinct alteration of localization of S100A11 expression was observed in pterygium epithelium compared to the conjunctiva. Therefore, these S100 proteins may be associated with the formation of pterygium.
PMCID: PMC2642841  PMID: 19223989
10.  Effect of dispase denudation on amniotic membrane 
Molecular Vision  2009;15:1962-1970.
Purpose
To describe the cellular components, biochemical composition, and membrane surface characteristics of denuded human amniotic membrane (DHAM) treated with Dispase II.
Methods
DHAM was incubated with Dispase II (1.2 U/ml) for 30 min, 60 min, or 120 min. This was followed by gentle scraping to remove any remaining epithelial cells using a cell scraper. Histology, immunohistochemistry for extracellular matrix molecules and growth factors, and transmission (TEM) and scanning electron microscopy (SEM) were performed to assess the effects of increasing durations of incubation on DHAM structure.
Results
Dispase II treatment was associated with the digestion of several ECM molecules, particularly those in the basement membrane including collagen VI, fibronectin, and laminin. FGF-2 and PDGF-B expression were unaffected by Dispase II, but TGF-α, TGF-β1, TGF-β2R, PDGF-A, VEGF, and EGFR expression were all reduced by Dispase II incubation. TEM confirmed the disruption of DHAM ultrastructure with increasing duration of Dispase II incubation, beginning with disruption of the basal lamina and progressing to loosening of the stromal collagen network as well.
Conclusions
The use of Dispase II in the preparation of DHAM causes significant changes to the ultrastructure of the membrane, particularly the BM. Prolonged incubation with dispase may cause significant disruption in DHAM structure which may affect cell growth in cultured explants.
PMCID: PMC2751804  PMID: 19784395
11.  In vitro effect of a corrosive hostile ocular surface on candidate biomaterials for keratoprosthesis skirt 
The British Journal of Ophthalmology  2012;96(9):1252-1258.
Aim
Keratoprosthesis (KPro) devices are prone to long-term corrosion and microbiological assault. The authors aimed to compare the inflammatory response and material dissolution properties of two candidate KPro skirt materials, hydroxyapatite (HA) and titania (TiO2) in a simulated in vitro cornea inflammation environment.
Methods
Lipopolysaccharide-stimulated cytokine secretions were evaluated with human corneal fibroblasts on both HA and TiO2. Material specimens were subjected to electrochemical and long-term incubation test with artificial tear fluid (ATF) of various acidities. Topography and surface roughness of material discs were analysed by scanning electron microscopy and atomic force microscopy.
Results
There were less cytokines secreted from human corneal fibroblasts seeded on TiO2 substrates as compared with HA. TiO2 was more resistant to the corrosion effect caused by acidic ATF in contrast to HA. Moreover, the elemental composition of TiO2 was more stable than HA after long-term incubation with ATF.
Conclusions
TiO2 is more resistant to inflammatory degradation and has a higher corrosion resistance as compared with HA, and in this regard may be a suitable material to replace HA as an osteo-odonto-keratoprosthesis skirt. This would reduce resorption rates for KPro surgery.
doi:10.1136/bjophthalmol-2012-301633
PMCID: PMC3432489  PMID: 22802307
OOKP; microbial infection; material dissolution; artificial tear fluid; cornea; biochemistry; prosthesis; microbiology; contact lens; stem cells; lens and zonules; treatment surgery; epidemiology; experimental and animal models; ocular surface; genetics; imaging; treatment lasers

Results 1-11 (11)