PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Identification of ganglion cell neurites in human subretinal and epiretinal membranes 
The British Journal of Ophthalmology  2006;91(9):1234-1238.
Aim
To determine whether neural elements are present in subretinal and epiretinal proliferative vitreoretinopathy (PVR) membranes as well as in diabetic, fibrovascular membranes removed from patients during vitrectomy surgery.
Methods
Human subretinal and epiretinal membranes of varying durations were immunolabelled with different combinations of antibodies to glial fibrillary acidic protein, vimentin, neurofilament protein and laminin.
Results
Anti‐neurofilament‐labelled neurites from presumptive ganglion cells were frequently found in epiretinal membranes and occasionally found in subretinal membranes. In addition, the neurites were only observed in regions that also contained glial processes.
Conclusions
These data demonstrate that neuronal processes are commonly found in human peri‐retinal cellular membranes similar to that demonstrated in animal models. These data also suggest that glial cells growing out of the neural retina form a permissive substrate for neurite growth and thus may hold clues to factors that support this growth.
doi:10.1136/bjo.2006.104612
PMCID: PMC1954915  PMID: 17108012
2.  Vitreous TIMP-1 levels associate with neovascularization and TGF-β2 levels but not with fibrosis in the clinical course of proliferative diabetic retinopathy 
In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and CCN2 (connective tissue growth factor; CTGF) cause blindness by neovascularization and subsequent fibrosis. This angio-fibrotic switch is associated with a shift in the balance between vitreous levels of CCN2 and VEGF in the eye. Here, we investigated the possible involvement of other important mediators of fibrosis, tissue inhibitor of metalloproteinases (TIMP)-1 and transforming growth factor (TGF)-β2, and of the matrix metalloproteinases (MMP)-2 and MMP-9, in the natural course of PDR. TIMP-1, activated TGF-β2, CCN2 and VEGF levels were measured by ELISA in 78 vitreous samples of patients with PDR (n = 28), diabetic patients without PDR (n = 24), and patients with the diabetes-unrelated retinal conditions macular hole (n = 10) or macular pucker (n = 16), and were related to MMP-2 and MMP-9 activity on zymograms and to clinical data, including degree of intra-ocular neovascularization and fibrosis. TIMP-1, CCN2 and VEGF levels, but not activated TGF-β2 levels, were significantly increased in the vitreous of diabetic patients, with the highest levels in PDR patients. CCN2 and the CCN2/VEGF ratio were the strongest predictors of degree of fibrosis. In diabetic patients with or without PDR, activated TGF-β2 levels correlated with TIMP-1 levels, whereas in PDR patients, TIMP-1 levels, MMP-2 and proMMP-9 were associated with degree of neovascularization, like VEGF levels, but not with fibrosis. We confirm here our previous findings that retinal fibrosis in PDR patients is significantly correlated with vitreous CCN2 levels and the CCN2/VEGF ratio. In contrast, TIMP-1, MMP-2 and MMP-9 appear to have a role in the angiogenic phase rather than in the fibrotic phase of PDR.
doi:10.1007/s12079-012-0178-y
PMCID: PMC3590360  PMID: 23054594
Diabetic retinopathy; CCN2; VEGF; TGF-β; TIMP-1; MMP-2; MMP-9; Neovascularization; Fibrosis
3.  A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy 
Introduction
In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) may cause blindness by neovascularisation followed by fibrosis of the retina. It has previously been shown that a shift in the balance between levels of CTGF and VEGF in the eye is associated with this angiofibrotic switch. This study investigated whether anti-VEGF agents induce accelerated fibrosis in patients with PDR, as predicted by this model.
Methods
CTGF and VEGF levels were measured by ELISA in 52 vitreous samples of PDR patients, of which 24 patients had received intravitreal bevacizumab 1 week to 3 months before vitrectomy, and were correlated with the degree of vitreoretinal fibrosis as determined clinically and intra-operatively.
Results
CTGF correlated positively, and VEGF correlated negatively with the degree of fibrosis. The CTGF/VEGF ratio was the strongest predictor of fibrosis. Clinically, increased fibrosis was observed after intravitreal bevacizumab.
Conclusions
These results confirm that the CTGF/VEGF ratio is a strong predictor of vitreoretinal fibrosis in PDR, and show that intravitreal anti-VEGF treatment causes increased fibrosis in PDR patients. These findings provide strong support for the model that the balance of CTGF and VEGF determines the angiofibrotic switch, and identify CTGF as a possible therapeutic target in the clinical management of PDR.
doi:10.1136/bjophthalmol-2011-301005
PMCID: PMC3308470  PMID: 22289291
Angiogenesis; choroid; CTGF; diabetic retinopathy; drugs; fibrosis; imaging; macula; retina; VEGF; vitreous

Results 1-3 (3)