Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
2.  Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer 
Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter.
PMCID: PMC3826237  PMID: 24174115
seasonal adaptation; retina; scotopic vision
3.  Systemic Administration of Abeta mAb Reduces Retinal Deposition of Abeta and Activated Complement C3 in Age-Related Macular Degeneration Mouse Model 
PLoS ONE  2013;8(6):e65518.
Age-related macular degeneration (AMD) is a leading cause of legal blindness in the Western world. There are effective treatments for the vascular complications of neo-vascular AMD, but no effective therapies are available for the dry/atrophic form of the disease. A previously described transgenic CFH-gene deficient mouse model, (cfh−/−), shows hallmarks of early AMD. The ocular phenotype has been further analysed to demonstrate amyloid beta (Aβ) rich basement membrane deposits associated with activated complement C3. Cfh−/− mice were treated systemically in both prophylactic and therapeutic regimes with an anti-Aβ monoclonal antibody (mAb), 6F6, to determine the effect on the cfh−/− retinal phenotype. Prophylactic treatment with 6F6 demonstrated a dose dependent reduction in the accumulation of both Aβ and activated C3 deposition. A similar reduction in the retinal endpoints could be seen after therapeutic treatment. Serum Aβ levels after systemic administration of 6F6 show accumulation of Aβ in the periphery suggestive of a peripheral sink mechanism. In summary, anti-Aβ mAb treatment can partially prevent or reverse ocular phenotypes of the cfh−/− mouse. The data support this therapeutic approach in humans potentially modulating two key elements in the pathogenesis of AMD – Aβ and activated, complement C3.
PMCID: PMC3682980  PMID: 23799019
4.  Treatment with 670 nm Light Up Regulates Cytochrome C Oxidase Expression and Reduces Inflammation in an Age-Related Macular Degeneration Model 
PLoS ONE  2013;8(2):e57828.
Inflammation is an umbrella feature of ageing. It is present in the aged retina and many retinal diseases including age-related macular degeneration (AMD). In ageing and in AMD mitochondrial function declines. In normal ageing this can be manipulated by brief exposure to 670 nm light on the retina, which increases mitochondrial membrane potential and reduces inflammation. Here we ask if 670 nm exposure has the same ability in an aged mouse model of AMD, the complement factor H knockout (CFH−/−) where inflammation is a key feature. Further, we ask whether this occurs when 670 nm is delivered briefly in environmental lighting rather than directly focussed on the retina. Mice were exposed to 670 nm for 6 minutes twice a day for 14 days in the form of supplemented environmental light. Exposed animals had significant increase in cytochrome c oxidase (COX), which is a mitochondrial enzyme regulating oxidative phosphorylation.There was a significant reduction in complement component C3, an inflammatory marker in the outer retina. Vimetin and glial fibrillary acidic protein (GFAP) expression, which reflect retinal stress in Muller glia, were also significantly down regulated. There were also significant changes in outer retinal macrophage morphology. However, amyloid beta (Aβ) load, which also increases with age in the outer retina and is pro-inflammatory, did not change. Hence, 670 nm is effective in reducing inflammation probably via COX activation in mice with a genotype similar to that in 50% of AMD patients even when brief exposures are delivered via environmental lighting. Further, inflammation can be reduced independent of Aβ. The efficacy revealed here supports current early stage clinical trials of 670 nm in AMD patients.
PMCID: PMC3585189  PMID: 23469078
5.  Survival of Dopaminergic Amacrine Cells after Near-Infrared Light Treatment in MPTP-Treated Mice 
ISRN Neurology  2012;2012:850150.
We examined whether near-infrared light (NIr) treatment (photobiomodulation) saves dopaminergic amacrine cells of the retina in an acute and a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease. For the acute model, BALB/c mice had MPTP (100 mg/kg) or saline injections over 30 hours, followed by a six-day-survival period. For the chronic model, mice had MPTP (200 mg/kg) or saline injections over five weeks, followed by a three-week-survival period. NIr treatment was applied either at the same time (simultaneous series) or well after (posttreatment series) the MPTP insult. There were four groups within each series: Saline, Saline-NIr, MPTP, and MPTP-NIr. Retinae were processed for tyrosine hydroxylase (TH) immunochemistry, and cell number was analysed. In the MPTP groups, there was a significant reduction in TH+ cell number compared to the saline controls; this reduction was greater in the acute (~50%) compared to the chronic (~30%) cases. In the MPTP-NIr groups, there were significantly more TH+ cells than in the MPTP groups of both series (~30%). In summary, we showed that NIr treatment was able to both protect (simultaneous series) and rescue (posttreatment series) TH+ cells of the retina from parkinsonian insult.
PMCID: PMC3369478  PMID: 22701184
6.  Aged peripheral retinal lesions originating from the ciliary body sweep away the retinal pigmented epithelium 
To investigate age-related lesions in the far-anterior retina that migrate from the ciliary body (CB) and how they affect the neural retina and retinal pigmented epithelium (RPE).
One eye from three healthy subjects aged 87, 92 and 93 years were used. Retinae were photographed, embedded in resin and then sectioned at 2 μm.
Multiple elliptically shaped lesions were present in the CB. Larger lesions extended into the peripheral retina. Lesions resulted from deposits that had lenticular qualities. These develop centrally along Bruch's membrane sweeping away the RPE, such that piles of RPE cells were present around the deposits that resulted in retinal atrophy. The internal composition of the deposits revealed large numbers of spherical bodies, unlike those seen in drusen. RPE cells adjacent to these deposits and their underlying lesions became highly irregular, with melanin granules spacing themselves out within the cell and adopting similar orientations. This is a highly distinctive feature.
These far-anterior deposits were different in nature from drusen in terms of morphology, composition and origin. They swept away the RPE, exposing the Bruch's membrane and isolating the retina, leading to atrophy. They appeared to originate from the CB and progressed centrally. The deposits may have developed from the ciliary muscle, which would account for their elongated orientation. Their impact on melanin distribution in RPE cells was unexpected and unusual, implying that they release a signal that influences melanin organisation.
PMCID: PMC3355342  PMID: 22426947
Lesions/deposits; far-peripheral retina; RPE; retina; ciliary body; degeneration; pathology
7.  Mature Peripheral RPE Cells Have an Intrinsic Capacity to Proliferate; A Potential Regulatory Mechanism for Age-Related Cell Loss 
PLoS ONE  2011;6(4):e18921.
Mammalian peripheral retinal pigmented epithelium (RPE) cells proliferate throughout life, while central cells are senescent. It is thought that some peripheral cells migrate centrally to correct age-related central RPE loss.
Methodology/Principal Findings
We ask whether this proliferative capacity is intrinsic to such cells and whether cells located centrally produce diffusible signals imposing senescence upon the former once migrated. We also ask whether there are regional differences in expression patterns of key genes involved in these features between the centre and the periphery in vivo and in vitro. Low density RPE cultures obtained from adult mice revealed significantly greater levels of proliferation when derived from peripheral compared to central tissue, but this significance declined with increasing culture density. Further, exposure to centrally conditioned media had no influence on proliferation in peripheral RPE cell cultures at the concentrations examined. Central cells expressed significantly higher levels of E-Cadherin revealing a tighter cell adhesion than in the peripheral regions. Fluorescence-labelled staining for E-Cadherin, F-actin and ZO-1 in vivo revealed different patterns with significantly increased expression on central RPE cells than those in the periphery or differences in junctional morphology. A range of other genes were investigated both in vivo and in vitro associated with RPE proliferation in order to identify gene expression differences between the centre and the periphery. Specifically, the cell cycle inhibitor p27Kip1 was significantly elevated in central senescent regions in vivo and mTOR, associated with RPE cell senescence, was significantly elevated in the centre in comparison to the periphery.
These data show that the proliferative capacity of peripheral RPE cells is intrinsic and cell-autonomous in adult mice. These differences between centre and periphery are reflected in distinct patterns in junctional markers. The regional proliferation differences may be inversely dependent to cell-cell contact.
PMCID: PMC3081302  PMID: 21526120
8.  Viewing Ageing Eyes: Diverse Sites of Amyloid Beta Accumulation in the Ageing Mouse Retina and the Up-Regulation of Macrophages 
PLoS ONE  2010;5(10):e13127.
Amyloid beta (Aβ) accumulates in the ageing central nervous system and is associated with a number of age-related diseases, including age-related macular degeneration (AMD) in the eye. AMD is characterised by accumulation of extracellular deposits called drusen in which Aβ is a key constituent. Aβ activates the complement cascade and its deposition is associated with activated macrophages. So far, little is known about the quantitative measurements of Aβ accumulation and definitions of its relative sites of ocular deposition in the normal ageing mouse.
Methodology/Principal Findings
We have traced Aβ accumulation quantitatively in the ageing mouse retina using immunohistochemistry and Western blot analysis. We reveal that it is not only deposited at Bruch's membrane and along blood vessels, but unexpectedly, it also coats photoreceptor outer segments. While Aβ is present at all sites of deposition from 3 months of age, it increases markedly from 6 months onward. Progressive accumulation of deposits on outer segments was confirmed with scanning electron microscopy, revealing age-related changes in their morphology. Such progress of accumulation of Aβ on photoreceptor outer segments with age was also confirmed in human retinae using immunohistochemistry. We also chart the macrophage response to increases in Aβ showing up-regulation in their numbers using both confocal laser imaging of the eye in vivo followed by in vitro immunostaining. With age macrophages become bloated with cellular debris including Aβ, however, their increasing numbers fail to stop Aβ accumulation.
Increasing Aβ deposition in blood vessels and Bruch's membrane will impact upon retinal perfusion and clearance of cellular waste products from the outer retina, a region of very high metabolic activity. This accumulation of Aβ may contribute to the 30% reduction of photoreceptors found throughout life and the shortening of those that remain. The coating of Aβ on outer segments may also have an impact upon visual function with age.
PMCID: PMC2948519  PMID: 20957206
9.  Microscopic mammalian retinal pigment epithelium lesions induce widespread proliferation with differences in magnitude between center and periphery 
Molecular Vision  2010;16:570-581.
The vertebrate retina develops from the center to the periphery. In amphibians and fish the retinal margin continues to proliferate throughout life, resulting in retinal expansion. This does not happen in mammals. However, some mammalian peripheral retinal pigment epithelial (RPE) cells continue to divide, perhaps as a vestige of this mechanism. The RPE cells are adjacent to the ciliary margin, a known stem cell source. Here we test the hypothesis that peripheral RPE is fundamentally different from central RPE by challenging different regions with microscopic laser burns and charting differential responses in terms of levels of proliferation and the regions over which this proliferation occurs.
Microscopic RPE lesions were undertaken in rats at different eccentricities and the tissue stained for proliferative markers Ki67 and bromodeoxyuridine (BrdU) and the remodeling metalloproteinase marker 2 (MMP2).
All lesions produced local RPE proliferation and tissue remodeling. Significantly more mitosis resulted from peripheral than central lesions. Unexpectedly, single lesions also resulted in RPE cells proliferating across the entire retina. Their number did not increase linearly with lesion number, indicating that they may be a specific population. All lesions repaired and formed apparently normal relations with the neural retina. Repaired RPE was albino.
These results highlight regional RPE differences, revealing an enhanced peripheral repair capacity. Further, all lesions have a marked impact on both local and distant RPE cells, demonstrating a pan retinal signaling mechanism triggering proliferation across the tissue plane. The RPE cells may represent a distinct population as their number did not increase with multiple lesions. The fact that repairing cells were hypopigmented is of interest because reduced pigment is associated with enhanced proliferative capacities in the developing neural retina.
PMCID: PMC2847682  PMID: 20360994
10.  Developmental dynamics of cone photoreceptors in the eel 
Many fish alter their expressed visual pigments during development. The number of retinal opsins expressed and their type is normally related to the environment in which they live. Eels are known to change the expression of their rod opsins as they mature, but might they also change the expression of their cone opsins?
The Rh2 and Sws2 opsin sequences from the European Eel were isolated, sequenced and expressed in vitro for an accurate measurement of their λmax values. In situ hybridisation revealed that glass eels express only rh2 opsin in their cone photoreceptors, while larger yellow eels continue to express rh2 opsin in the majority of their cones, but also have <5% of cones which express sws2 opsin. Silver eels showed the same expression pattern as the larger yellow eels. This observation was confirmed by qPCR (quantitative polymerase chain reaction).
Larger yellow and silver European eels express two different cone opsins, rh2 and sws2. This work demonstrates that only the Rh2 cone opsin is present in younger fish (smaller yellow and glass), the sws2 opsin being expressed additionally only by older fish and only in <5% of cone cells.
PMCID: PMC2807862  PMID: 20025774
11.  Segregated hemispheric pathways through the optic chiasm distinguish primates from rodents 
Neuroscience  2008;157(3):637-643.
At the optic chiasm retinal fibres either cross the midline, or remain uncrossed. Here we trace hemispheric pathways through the marmoset chiasm and show that fibres from the lateral optic nerve pass directly towards the ipsilateral optic tract without any significant change in fibre order and without approaching the midline, while those from medial regions of the nerve decussate directly. Anterograde labelling from one eye shows that the two hemispheric pathways remain segregated through the proximal nerve and chiasm with the uncrossed confined laterally. Retrograde labelling from the optic tract confirms this. This clearly demonstrates that hemispheric pathways are segregated through the primate chiasm.
Previous chiasmatic studies have been undertaken mainly on rodents and ferrets. In these species there is a major change in fibre order pre-chiasmatically, where crossed and uncrossed fibres mix, reflecting their embryological history when all fibres approach the midline prior to their commitment to innervate either hemisphere. This pattern was thought to be common to placental mammals. In marsupials there is no change in fibre order and uncrossed fibres remain confined laterally through nerve and chiasm, again, reflecting their developmental history when all uncrossed fibres avoid the midline. Recently it has been shown that this distinction is not a true dichotomy between placental mammals and marsupials, as fibre order in tree shrews and humans mirrors the marsupial pattern.
Architectural differences in the mature chiasm probably reflect different developmental mechanisms regulating pathway choice. Our results therefore suggest that both the organisation and development of the primate optic chiasm differ markedly from that revealed in rodents and carnivores.
PMCID: PMC2736912  PMID: 18854206
Retina; marmoset; vision development
12.  Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance 
The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6Sey/Sey) and are abnormally small in Pax6Sey/+ mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections.
Eyes form in PAX77+/+ embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77+/+ retinae produce a normal range of cell types, including retinal ganglion cells (RGCs). At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77+/+ embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6Sey/+, Pax6+/+, PAX77+ and PAX77+/+) showed that (1) the total number of RGC axons projected by the retina and (2) the proportions that are sorted into the ipsilateral and contralateral optic tracts at the optic chiasm vary differently with gene dosage. Increasing dosage increases the proportion projecting ipsilaterally regardless of the size of the total projection.
Pax6 overexpression does not obviously impair the initial formation of the eye and its major cell-types but prevents normal development of the retina from about E14.5, leading eventually to severe retinal degeneration in postnatal life. This sequence is different to that underlying microphthalmia in Pax6+/- heterozygotes, which is due primarily to defects in the initial stages of lens formation. Before the onset of severe retinal dysplasia, Pax6 overexpression causes defects of retinal axons, preventing their normal growth and navigation through the optic chiasm.
PMCID: PMC2422841  PMID: 18507827
13.  Mature retinal pigment epithelium cells are retained in the cell cycle and proliferate in vivo 
Molecular Vision  2008;14:1784-1791.
To investigate the capacity of mature retinal pigment epithelium (RPE) cells to enter the cell cycle in vivo using a range of RPE-specific and proliferative specific markers in both pigmented and albino rats.
Whole-mounted retinas of both Dark Agouti and albino rats were immunolabeled with cell cycle markers Ki67 or PCNA and double labeled with RPE cell marker RPE65 or CRALBP. The number and distribution of these cells was mapped. An additional group of Dark Agouti rats were given repeated intraperitoneal injections of Bromodeoxyuridine (BrdU )for 20 days and then sacrificed 30 days later. The retinas were then processed for BrdU detection and Otx, a RPE cell-specific marker. For comparison, human RPE tissue from a postmortem donor was also labeled for Ki67.
In both pigmentation phenotypes, a subpopulation of mature RPE cells in the periphery were positive for both cell cycle markers. These cells were negative for Caspase 3, hence were not apoptotic. Ki67-positive cells were also seen in human RPE. Further, many cells positive for BrdU were identified in similar retinal regions, confirming that RPE cells not only enter the cell cycle but also divide, albeit at a slow cell cycle rate. There was a ten fold increase in the number of RPE cells positive for cell cycle markers in albino (approximately 200 cells) compared to pigmented rats (approximately 20 cells).
Peripheral RPE cells in rats have the capacity to enter the cell cycle and complete cellular division.
PMCID: PMC2562424  PMID: 18843376

Results 1-13 (13)