Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Temozolomide-mediated DNA methylation in human myeloid precursor cells:differential involvement of intrinsic and extrinsic apoptotic pathways 
An understanding of how hematopoietic cells respond to therapy that causes myelosuppression will help develop approaches to prevent this potentially life-threatening toxicity. The goal of this study was to determine how human myeloid precursor cells (MP) respond to temozolomide (TMZ)-induced DNA damage.
Experimental Design
We developed an ex vivo primary human MP cells model system to investigate the involvement of cell-death pathways using a known myelosuppressive regimen of O6-benzylguanine (6BG) and TMZ.
Exposure to 6BG/TMZ led to increases in p53, p21, γ-H2AX, and mitochondrial DNA damage. Increases in mitochondrial membrane depolarization correlated with increased caspase-9 and caspase-3 activities following 6BG/TMZ treatment. These events correlated with decreases in activated AKT, downregulation of the DNA repair protein O6methylguanine-DNA methyltransferase (MGMT), and increased cell death. During MP cell expansion, FAS/CD95/APO1(FAS) expression increased over time and was present on ~100% of the cells following exposure to 6BG/TMZ. While c-flipshort, an endogenous inhibitor of FAS-mediated signaling, was decreased in 6BG/TMZ-treated versus control, 6BG-, or TMZ alone-treated cells, there were no changes in caspase-8 activity. Additionally, there were no changes in the extent of cell death in MP cells exposed to 6BG/TMZ in the presence of neutralizing or agonistic anti-FAS antibodies, indicating that FAS-mediated signaling was not operative.
In human MP cells, 6BG/TMZ-initiated apoptosis occurred by intrinsic, mitochondrial-mediated and not extrinsic, FAS-mediated apoptosis. Human MP cells represent a clinically relevant model system for gaining insight into how hematopoietic cells respond to chemotherapeutics and offer an approach for selecting effective chemotherapeutic regimens with limited hematopoietic toxicity.
PMCID: PMC3711223  PMID: 23536437
2.  Humanized bone-marrow mouse model as a pre-clinical tool to assess therapy-mediated hematotoxicity 
Pre-clinical in vivo studies can help guide the selection of agents and regimens for clinical testing. However, one of the challenges in screening anti-cancer therapies is the assessment of off-target human toxicity. There is a need for in vivo models that can simulate efficacy and toxicities of promising therapeutic regimens. For example, hematopoietic cells of human origin are particularly sensitive to a variety of chemotherapeutic regimens but in vivo models to assess potential toxicities have not been developed. In this study, a xenograft model containing humanized bone marrow is utilized as an in vivo assay to monitor hematotoxicity.
Experimental Design
A proof-of-concept, temozolomide-based regimen was developed that inhibits tumor xenograft growth. This regimen was selected for testing since it has been previously shown to cause myelosuppression in mice and humans. The dose-intensive regimen was administered to NOD/SCID/γchainnull mice reconstituted with human hematopoietic cells and the impact of treatment on human hematopoiesis was evaluated.
The dose-intensive regimen resulted in significant decreases in growth of human-glioblastoma xenografts. When this regimen was administered to mice containing humanized bone marrow, flow cytometric analyses indicated that the human bone-marrow cells were significantly more sensitive to treatment than the murine bone-marrow cells, and that the regimen was highly toxic to human-derived hematopoietic cells of all lineages (progenitor, lymphoid, and myeloid).
The humanized bone-marrow xenograft model described has the potential to be used as a platform for monitoring the impact of anti-cancer therapies on human hematopoiesis and could lead to subsequent refinement of therapies prior to clinical evaluation.
PMCID: PMC3078977  PMID: 21487065
human xenograft model; myelosuppression; stem-cell
3.  Differential Secondary Reconstitution of In Vivo-Selected Human SCID-Repopulating Cells in NOD/SCID versus NOD/SCID/γ chainnull Mice 
Bone Marrow Research  2010;2011:252953.
Humanized bone-marrow xenograft models that can monitor the long-term impact of gene-therapy strategies will help facilitate evaluation of clinical utility. The ability of the murine bone-marrow microenvironment in NOD/SCID versus NOD/SCID/γ chainnull mice to support long-term engraftment of MGMTP140K-transduced human-hematopoietic cells following alkylator-mediated in vivo selection was investigated. Mice were transplanted with MGMTP140K-transduced CD34+ cells and transduced cells selected in vivo. At 4 months after transplantation, levels of human-cell engraftment, and MGMTP140K-transduced cells in the bone marrow of NOD/SCID versus NSG mice varied slightly in vehicle- and drug-treated mice. In secondary transplants, although equal numbers of MGMTP140K-transduced human cells were transplanted, engraftment was significantly higher in NOD/SCID/γ chainnull mice compared to NOD/SCID mice at 2 months after transplantation. These data indicate that reconstitution of NOD/SCID/γ chainnull mice with human-hematopoietic cells represents a more promising model in which to test for genotoxicity and efficacy of strategies that focus on manipulation of long-term repopulating cells of human origin.
PMCID: PMC3200073  PMID: 22046557

Results 1-3 (3)