Search tips
Search criteria

Results 1-25 (340)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Regional increases of cortical thickness in untreated, first-episode major depressive disorder 
Translational Psychiatry  2014;4(4):e378-.
The large majority of structural MRI studies of major depressive disorder (MDD) investigated volumetric changes in chronic medicated patients in whom course of illness and treatment effects may impact anatomic measurements. Further, in few studies, separate measurements of cortical thickness and surface area have been performed that reflect different neurobiological processes regulated by different genetic mechanisms. In the present study, we investigated both cortical thickness and surface area in first-episode, treatment-naïve, mid-life MDD to elucidate the core pathophysiology of this disease and its early impact on the brain. We observed increased cortical thickness in the right hemisphere, including medial orbitofrontal gyrus, pars opercularis, rostral middle frontal gyrus and supramarginal gyrus. Increased thickness of rostral middle frontal gyrus was negatively related with depression severity on the Hamilton Depression Rating Scale. Furthermore, MDD patients showed significantly increased associations in cortical thickness measurements among areas where increased cortical thickness was observed. Analysis of pial area revealed a trend toward increased surface area in the left parahippocampal gyrus in MDD. To permit comparison of our data with those of previous gray matter volume studies, voxel-based morphometry was performed. That analysis revealed significantly increased gray matter volume in left paracentral lobule, left superior frontal gyrus, bilateral cuneus and thalamus which form limbic-cortico–striato–pallido–thalamic loops. These changes in first-episode, treatment-naïve, mid-life MDD patients may reflect an active illness-related cortical change close to illness onset, and thus potentially provide important new insight into the early neurobiology of the disorder.
PMCID: PMC4012282  PMID: 24713859
2.  Rapid discovery and optimization of therapeutic antibodies against emerging infectious diseases 
Using a comprehensive set of discovery and optimization tools, antibodies were produced with the ability to neutralize SARS coronavirus (SARS-CoV) infection in Vero E6 cells and in animal models. These anti-SARS antibodies were discovered using a novel DNA display method, which can identify new antibodies within days. Once neutralizing antibodies were identified, a comprehensive and effective means of converting the mouse sequences to human frameworks was accomplished using HuFR™ (human framework reassembly) technology. The best variant (61G4) from this screen showed a 3.5–4-fold improvement in neutralization of SARS-CoV infection in vitro. Finally, using a complete site-saturation mutagenesis methodology focused on the CDR (complementarity determining regions), a single point mutation (51E7) was identified that improved the 80% plaque reduction neutralization of the virus by greater than 8-fold. These discovery and evolution strategies can be applied to any emerging pathogen or toxin where a causative agent is known.
PMCID: PMC2461042  PMID: 18480090
antibody discovery; humanized; optimized; SARS-CoV
3.  Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2 
The New England journal of medicine  2013;369(25):2391-2405.
Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge.
We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry.
Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8% of myelodysplasia samples, in occasional samples of other myeloid cancers, and in none of the other cancers. A total of 148 CALR mutations were identified with 19 distinct variants. Mutations were located in exon 9 and generated a +1 base-pair frameshift, which would result in a mutant protein with a novel C-terminal. Mutant calreticulin was observed in the endoplasmic reticulum without increased cell-surface or Golgi accumulation. Patients with myeloproliferative neoplasms carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels than patients with mutated JAK2. Mutation of CALR was detected in hematopoietic stem and progenitor cells. Clonal analyses showed CALR mutations in the earliest phylogenetic node, a finding consistent with its role as an initiating mutation in some patients.
Somatic mutations in the endoplasmic reticulum chaperone CALR were found in a majority of patients with myeloproliferative neoplasms with nonmutated JAK2. (Funded by the Kay Kendall Leukaemia Fund and others.)
PMCID: PMC3966280  PMID: 24325359
4.  Structural issues affecting creation of a community action and advocacy board 
Health Education Research  2013;28(3):375-391.
The most effective woman-initiated method to prevent HIV/sexually transmitted infections is the female condom (FC). Yet, FCs are often difficult to find and denigrated or ignored by community health and service providers. Evidence increasingly supports the need to develop and test theoretically driven, multilevel interventions using a community-empowerment framework to promote FCs in a sustained way. We conducted a study in a midsized northeastern US city (2009–2013) designed to create, mobilize and build capacity of a community group to develop and implement multilevel interventions to increase availability, accessibility and support for FCs in their city. The Community Action and Advocacy Board (CAAB) designed and piloted interventions concurrently targeting community, organizational and individual levels. Ethnographic observation of the CAAB training and intervention planning and pilot implementation sessions documented the process, preliminary successes, challenges and limitations of this model. The CAAB demonstrated ability to conceptualize, plan and initiate multilevel community change. However, challenges in group decision-making and limitations in members’ availability or personal capacity constrained CAAB processes and intervention implementation. Lessons from this experience could inform similar efforts to mobilize, engage and build capacity of community coalitions to increase access to and support for FCs and other novel effective prevention options for at-risk women.
PMCID: PMC3649213  PMID: 23660461
5.  Mapping shape quantitative trait loci using a radius-centroid-contour model 
Fu, G | Bo, W | Pang, X | Wang, Z | Chen, L | Song, Y | Zhang, Z | Li, J | Wu, R
Heredity  2013;110(6):511-519.
As the consequence of complex interactions between different parts of an organ, shape can be used as a predictor of structural–functional relationships implicated in changing environments. Despite such importance, however, it is no surprise that little is known about the genetic detail involved in shape variation, because no approach is currently available for mapping quantitative trait loci (QTLs) that control shape. Here, we address this problem by developing a statistical model that integrates the principle of shape analysis into a mixture-model-based likelihood formulated for QTL mapping. One state-of-the-art approach for shape analysis is to identify and analyze the polar coordinates of anatomical landmarks on a shape measured in terms of radii from the centroid to the contour at regular intervals. A procrustes analysis is used to align shapes to filter out position, scale and rotation effects on shape variation. To the end, the accurate and quantitative representation of a shape is produced with aligned radius-centroid-contour (RCC) curves, that is, a function of radial angle at the centroid. The high dimensionality of the RCC data, crucial for a comprehensive description of the geometric feature of a shape, is reduced by principal component (PC) analysis, and the resulting PC axes are treated as phenotypic traits, allowing specific QTLs for global and local shape variability to be mapped, respectively. The usefulness and utilization of the new model for shape mapping in practice are validated by analyzing a mapping data collected from a natural population of poplar, Populus szechuanica var tibetica, and identifying several QTLs for leaf shape in this species. The model provides a powerful tool to compute which genes determine biological shape in plants, animals and humans.
PMCID: PMC3656636  PMID: 23572125
genetic mapping; shape variation; QTL; poplar; statistical model
6.  Crystal-momentum dispersion of ultrafast spin change in fcc Co 
Scientific Reports  2014;4:5010.
Nearly twenty years ago, Beaurepaire and coworkers showed that when an ultrafast laser impinges on a ferromagnet, its spin moment undergoes a dramatic change, but how it works remains a mystery. While the current experiment is still unable to resolve the minute details of the spin change, crystal momentum-resolved techniques have long been used to analyze the charge dynamics in superconductors and strongly correlated materials. Here we extend it to probe spin moment change in the entire three-dimensional Brillouin zone for fcc Co. Our results indeed show a strong spin activity along the Δ line, supporting a prior experimental finding. The spin active pockets coalesce into a series of spin surfaces that follow the Fermi surfaces. We predict two largest spin change pockets which have been elusive to experiments: one pocket is slightly below the Δ line and the other is along the Λ line and close to the L point. Our theory presents an opportunity for the time-, spin- and momentum-resolve photoemission technique.
PMCID: PMC4031477  PMID: 24852331
7.  Kinetics of 90° domain wall motions and high frequency mesoscopic dielectric response in strained ferroelectrics: A phase-field simulation 
Scientific Reports  2014;4:5007.
The dielectric and ferroelectric behaviors of a ferroelectric are substantially determined by its domain structure and domain wall dynamics at mesoscopic level. A relationship between the domain walls and high frequency mesoscopic dielectric response is highly appreciated for high frequency applications of ferroelectrics. In this work we investigate the low electric field driven motion of 90°-domain walls and the frequency-domain spectrum of dielectric permittivity in normally strained ferroelectric lattice using the phase-field simulations. It is revealed that, the high-frequency dielectric permittivity is spatially inhomogeneous and reaches the highest value on the 90°-domain walls. A tensile strain favors the parallel domains but suppresses the kinetics of the 90° domain wall motion driven by electric field, while the compressive strain results in the opposite behaviors. The physics underlying the wall motions and thus the dielectric response is associated with the long-range elastic energy. The major contribution to the dielectric response is from the polarization fluctuations on the 90°-domain walls, which are more mobile than those inside the domains. The relevance of the simulated results wth recent experiments is discussed.
PMCID: PMC4028899  PMID: 24845806
9.  SPAG5 upregulation predicts poor prognosis in cervical cancer patients and alters sensitivity to taxol treatment via the mTOR signaling pathway 
Cell Death & Disease  2014;5(5):e1247-.
Previously, we found that sperm-associated antigen 5 (SPAG5) was upregulated in pelvic lymph node metastasis–positive cervical cancer. The aim of this study is to examine the role of SPAG5 in the proliferation and tumorigenicity of cervical cancer and its clinical significance in tumor progression. In our study, SPAG5 expression in cervical cancer patients was detected using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry; cervical cancer cell function with downregulated SPAG5 in vitro was explored using tetrazolium assay, flow cytometry, and colony formation and Transwell assays. SPAG5 was upregulated in tumor tissue compared with paired adjacent noncancerous tissues; SPAG5 upregulation in tumor tissues indicated poor disease-free survival, which was also an independent prognostic indicator for cervical cancer patients. In vitro study demonstrated that SPAG5 downregulation inhibited cell proliferation and growth significantly by G2/M arrest and induction of apoptosis, and hindered cell migration and invasion. Under SPAG5 downregulation, the sensitivity of cervical cancer cells differed according to taxol dose, which correlated with mammalian target of rapamycin (mTOR) signaling pathway activity. In general, SPAG5 upregulation relates to poor prognosis in cervical cancer patients, and SPAG5 is a regulator of mTOR activity during taxol treatment in cervical cancer.
PMCID: PMC4047857  PMID: 24853425
SPAG5; cervical cancer; mTOR
10.  Non-viral FoxM1 gene delivery to hepatocytes enhances liver repopulation 
Cell Death & Disease  2014;5(5):e1252-.
Hepatocyte transplantation as a substitute strategy of orthotopic liver transplantation is being studied for treating end-stage liver diseases. Several technical hurdles must be overcome in order to achieve the therapeutic liver repopulation, such as the problem of insufficient expansion of the transplanted hepatocytes in recipient livers. In this study, we analyzed the application of FoxM1, a cell-cycle regulator, to enhance the proliferation capacity of hepatocytes. The non-viral sleeping beauty (SB) transposon vector carrying FoxM1 gene was constructed for delivering FoxM1 into the hepatocytes. The proliferation capacities of hepatocytes with FoxM1 expression were examined both in vivo and in vitro. Results indicated that the hepatocytes with FoxM1 expression had a higher proliferation rate than wild-type (WT) hepatocytes in vitro. In comparison with WT hepatocytes, the hepatocytes with FoxM1 expression had an enhanced level of liver repopulation in the recipient livers at both sub-acute injury (fumaryl acetoacetate hydrolase (Fah)–/– mice model) and acute injury (2/3 partial hepatectomy mice model). Importantly, there was no increased risk of tumorigenicity with FoxM1 expression in recipients even after serial transplantation. In conclusion, expression of FoxM1 in hepatocytes enhanced the capacity of liver repopulation without inducing tumorigenesis. FoxM1 gene delivered by non-viral SB vector into hepatocytes may be a viable approach to promote therapeutic repopulation after hepatocyte transplantation.
PMCID: PMC4047909  PMID: 24853430
FoxM1; sleeping beauty transposon; non-viral; hepatocyte transplantation; liver repopulation
11.  Prognostic significance of low DICER expression regulated by miR-130a in cervical cancer 
Cell Death & Disease  2014;5(5):e1205-.
Dicer is crucial for the maturation of microRNAs (miRNAs) and its dysregulation may contribute to tumor initiation and progression. The study explored the clinical implications of Dicer and its post-transcriptional regulation by microRNAs in cervical cancer. qRT-PCR and immunohistochemistry investigated Dicer mRNA and protein levels in cervical cancer tissues. The relationship between Dicer expression and survival was analyzed. MiRNA target prediction identified miRNAs that might target Dicer. Luciferase reporter and gain- or loss-of-function assays were performed. The results showed that 36.7% of cervical cancer cases showed low expression of Dicer mRNA and 63.3% cases showed high expression. At the protein level, 51% cases showed negative expression and 49% cases showed positive expression. Dicer mRNA and protein expressions were significantly associated with distant metastasis and recurrence in cervical cancer (P=0.002 and P=0.012, respectively). Multivariate Cox analysis indicated that low Dicer expression (P=0.016) and tumor stage (P=0.047) were independent predictors. Among the miRNAs predicted to target Dicer, 10 were detected by RT-PCR; their expressions were significantly higher in cervical cancers with lower Dicer expression than in those with higher Dicer expression and were negatively correlated with Dicer expression level (P<0.05). In vitro experiments demonstrated that miR-130a directly targeted Dicer mRNA to enhance migration and invasion in SiHa cells. Finally, survival analysis indicated that higher expression of miR-130a was significantly associated with poor disease-free survival. Taken together, Dicer expression regulated by miR-130a is an important potential prognostic factor in cervical cancer.
PMCID: PMC4047899  PMID: 24787017
Dicer; miR-130; cervical cancer; microRNA; prognostic factor
12.  Electrical impedance alterations in the rat hind limb with unloading 
Methods are needed for quantifying muscle deconditioning due to immobilization, aging, or spaceflight. Electrical impedance myography (EIM) is one technique that may offer easy-to-follow metrics. Here, we evaluate the time course and character of the change in single- and multi-frequency EIM parameters in the hind-limb suspension model of muscle deconditioning in rats.
Sixty-two rats were studied with EIM during a two-week period of hind limb unloading followed by a two-week recovery period. Random subsets of animals were sacrificed at one-week time intervals to measure muscle fiber size.
Significant alterations were observed in nearly all impedance parameters. The 50 kHz phase and multi-frequency phase-slope, created by taking the slope of a line fitted to the impedance values between 100-500 kHz, appeared most sensitive to disuse atrophy, the latter decreasing by over 33.0±6.6% (p<0.001), a change similar to the maximum reduction in muscle fiber size. Impedance alterations, however, lagged changes in muscle fiber size.
EIM is sensitive to disuse change in the rat, albeit with a delay relative to alterations in muscle fiber size. Given the rapidity and simplicity of EIM measurements, the technique could prove useful in providing a non-invasive approach to measuring disuse change in animal models and human subjects.
PMCID: PMC3984464  PMID: 23445913
Electrical Impedance Myography; Hind Limb Unloading; Disuse; Sarcopenia; Muscle Fiber
13.  Subtyping of a Large Collection of Historical Listeria monocytogenes Strains from Ontario, Canada, by an Improved Multilocus Variable-Number Tandem-Repeat Analysis (MLVA) 
Applied and Environmental Microbiology  2013;79(20):6472-6480.
Listeria monocytogenes is responsible for severe and often fatal food-borne infections in humans. A collection of 2,421 L. monocytogenes isolates originating from Ontario's food chain between 1993 and 2010, along with Ontario clinical isolates collected from 2004 to 2010, was characterized using an improved multilocus variable-number tandem-repeat analysis (MLVA). The MLVA method was established based on eight primer pairs targeting seven variable-number tandem-repeat (VNTR) loci in two 4-plex fluorescent PCRs. Diversity indices and amplification rates of the individual VNTR loci ranged from 0.38 to 0.92 and from 0.64 to 0.99, respectively. MLVA types and pulsed-field gel electrophoresis (PFGE) patterns were compared using Comparative Partitions analysis involving 336 clinical and 99 food and environmental isolates. The analysis yielded Simpson's diversity index values of 0.998 and 0.992 for MLVA and PFGE, respectively, and adjusted Wallace coefficients of 0.318 when MLVA was used as a primary subtyping method and 0.088 when PFGE was a primary typing method. Statistical data analysis using BioNumerics allowed for identification of at least 8 predominant and persistent L. monocytogenes MLVA types in Ontario's food chain. The MLVA method correctly clustered epidemiologically related outbreak strains and separated unrelated strains in a subset analysis. An MLVA database was established for the 2,421 L. monocytogenes isolates, which allows for comparison of data among historical and new isolates of different sources. The subtyping method coupled with the MLVA database will help in effective monitoring/prevention approaches to identify environmental contamination by pathogenic strains of L. monocytogenes and investigation of outbreaks.
PMCID: PMC3811218  PMID: 23956391
14.  TRPV1 activation impedes foam cell formation by inducing autophagy in oxLDL-treated vascular smooth muscle cells 
Cell Death & Disease  2014;5(4):e1182-.
Vascular smooth muscle cells (VSMCs) are an important origin of foam cells besides macrophages. The mechanisms underlying VSMC foam cell formation are relatively little known. Activation of transient receptor potential vanilloid subfamily 1 (TRPV1) and autophagy have a potential role in regulating foam cell formation. Our study demonstrated that autophagy protected against foam cell formation in oxidized low-density lipoprotein (oxLDL)-treated VSMCs; activation of TRPV1 by capsaicin rescued the autophagy impaired by oxLDL and activated autophagy–lysosome pathway in VSMCs; activation of TRPV1 by capsaicin impeded foam cell formation of VSMCs through autophagy induction; activation of TRPV1 by capsaicin induced autophagy through AMP-activated protein kinase (AMPK) signaling pathway. This study provides evidence that autophagy plays an important role in VSMC foam cell formation and highlights TRPV1 as a promising therapeutic target in atherosclerosis.
PMCID: PMC4001301  PMID: 24743737
AMP-activated protein kinase; autophagy; foam cell; transient receptor potential vanilloid subfamily 1; vascular smooth muscle cell
15.  The histone methyltransferase ESET is required for the survival of spermatogonial stem/progenitor cells in mice 
An, J | Zhang, X | Qin, J | Wan, Y | Hu, Y | Liu, T | Li, J | Dong, W | Du, E | Pan, C | Zeng, W
Cell Death & Disease  2014;5(4):e1196-.
Self-renewal and differentiation of spermatogonial stem cells (SSCs) are the foundation of spermatogenesis throughout a male's life. SSC transplantation will be a valuable solution for young male patients to preserve their fertility. As SSCs in the collected testis tissue from the patients are very limited, it is necessary to expansion the SSCs in vitro. Previous studies suggested that histone methyltransferase ERG-associated protein with SET domain (ESET) represses gene expression and is essential for the maintenance of the pool of embryonic stem cells and neurons. The objective of this study was to determine the role of ESET in SSCs using in vitrocell culture and germ cell transplantation. Cell transplantation assay showed that knockdown of ESET reduced the number of seminiferous tubules with spermatogenesis when compared with that of the control. Knockdown of ESET also upregulated the expression of apoptosis-associated genes (such as P53, Caspase9, Apaf1), whereas inhibited the expression of apoptosis-suppressing genes (such as Bcl2l1, X-linked inhibitor of apoptosis protein). In addition, suppression of ESET led to increase in expression of Caspase9 and activation of Caspase3 (P17) as well as cleavage of poly (ADP-ribose) polymerase. Among the five ESET-targeting genes (Cox4i2, spermatogenesis and oogenesis Specific Basic Helix-Loop-Helix 2, Nobox, Foxn1 and Dazl) examined by ChIP assay, Cox4i2 was found to regulate SSC apoptosis by the rescue experiment. BSP analyses further showed that DNA methylation in the promoter loci of Cox4i2was influenced by ESET, indicating that ESET also regulated gene expression through DNA methylation in addition to histone methylation. In conclusion, we found that ESET regulated SSC apoptosis by suppressing of Cox4i2 expression through histone H3 lysine 9 tri-methylation and DNA methylation. The results obtained will provide unique insights that would broaden the research on SSC biology and contribute to the treatment of male infertility.
PMCID: PMC4001319  PMID: 24763053
spermatogonial stem cell; ESET; H3K9me3; apoptosis
16.  Achieving optimum mechanical performance in metallic nanolayered Cu/X (X = Zr, Cr) micropillars 
Scientific Reports  2014;4:4205.
The selection and design of modern high-performance structural engineering materials such as nanostructured metallic multilayers (NMMs) is driven by optimizing combinations of mechanical properties and requirements for predictable and noncatastrophic failure in service. Here, the Cu/X (X = Zr, Cr) nanolayered micropillars with equal layer thickness (h) spanning from 5–125 nm are uniaxially compressed and it is found that these NMMs exhibit a maximum strain hardening capability and simultaneously display a transition from bulk-like to small-volume materials behavior associated with the strength at a critical intrinsic size h ~ 20 nm. We develop a deformation mode-map to bridge the gap between the interface characteristics of NMMs and their failure phenomena, which, as shrinking the intrinsic size, transit from localized interface debonding/extrusion to interface shearing. Our findings demonstrate that the optimum robust performance can be achieved in NMMs and provide guidance for their microstructure sensitive design for performance optimization.
PMCID: PMC3966053  PMID: 24667702
17.  Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species 
Su, J | Chen, X | Huang, Y | Li, W | Li, J | Cao, K | Cao, G | Zhang, L | Li, F | Roberts, A I | Kang, H | Yu, P | Ren, G | Ji, W | Wang, Y | Shi, Y
Cell Death and Differentiation  2013;21(3):388-396.
Mammalian mesenchymal stem cells (MSCs) have been shown to be strongly immunosuppressive in both animal disease models and human clinical trials. We have reported that the key molecule mediating immunosuppression by MSCs is species dependent: indoleamine 2,3-dioxygenase (IDO) in human and inducible nitric oxide synthase (iNOS) in mouse. In the present study, we isolated MSCs from several mammalian species, each of a different genus, and investigated the involvement of IDO and iNOS during MSC-mediated immunosuppression. The characterization of MSCs from different species was by adherence to tissue culture plastic, morphology, specific marker expression, and differentiation potential. On the basis of the inducibility of IDO and iNOS by inflammatory cytokines in MSCs, the tested mammalian species fall into two distinct groups: IDO utilizers and iNOS utilizers. MSCs from monkey, pig, and human employ IDO to suppress immune responses, whereas MSCs from mouse, rat, rabbit, and hamster utilize iNOS. Interestingly, based on the limited number of species tested, the iNOS-utilizing species all belong to the phylogenetic clade, Glires. Although the evolutionary significance of this divergence is not known, we believe that this study provides critical guidance for choosing appropriate animal models for preclinical studies of MSCs.
PMCID: PMC3921585  PMID: 24162664
mesenchymal stem cells; inducible nitric oxide synthase; indoleamine 2; 3-dioxygenase; immunosuppression; mammalian phylogeny
18.  Cyclosporin A inhibits hepatitis C virus replication and restores interferon-alpha expression in hepatocytes 
Hepatitis C virus (HCV) infection is the leading indication for liver transplantation and a major cause of graft failure. This study investigated whether cyclosporin A (CsA), a widely used immunosuppressant for organ transplantation, inhibits full cycle HCV replication and restores type I interferon (IFN) signaling pathway in human hepatocytes. CsA treatment of hepatocytes before, during, and after HCV infection significantly inhibited full cycle viral replication, which is evidenced by decreased expression of HCV RNA, protein, and infectious viruses in human hepatocytes. The suppression of HCV replication by CsA was associated with elevated levels of endogenous IFN-α in infected hepatocytes. Although CsA had little effect on IFN-α signaling pathway in uninfected hepatocytes, CsA treatment of HCV-infected hepatocytes specifically upregulated the expression of IFN regulatory factor-1 and inhibited the expression of suppressor of cytokine signaling-1 and protein inhibitor of activated signal transducers and activators of transcription-x, the primary negative regulators of IFN signaling pathway. These findings provide additional evidence to support the development of CsA-based prevention/treatment of HCV infection for transplant recipients.
PMCID: PMC3937261  PMID: 21040279
hepatitis C virus; cyclosporin A; innate immunity; interferon; organ transplantation
19.  NF-κB1 p50 promotes p53 protein translation through miR-190 downregulation of PHLPP1 
Yu, Y | Zhang, D | Huang, H | Li, J | Zhang, M | Wan, Y | Gao, J | Huang, C
Oncogene  2013;33(8):996-1005.
The biological function of NF-κB1 (p50) in the regulation of protein expression is far from well understood owing to the lack of a transcriptional domain. Here, we report a novel function of p50 in its regulation of p53 protein translation under stress conditions. We found that the deletion of p50 (p50–/–) impaired arsenite-induced p53 protein expression, which could be restored after reconstitutive expression of HA-p50 in p50–/– cells, p50–/– (Ad-HA-p50). Further studies indicated that the amounts of p53 mRNA, p53 promoter-driven transcription activity and p53 protein degradation were comparable between wild-type and p50–/– cells. Moreover, we found that p50 was crucial for Akt/S6 ribosomal protein activation via inhibition of the translation of the PH domain and leucine-rich repeat protein phosphatases 1 (PHLPP1), a phosphatase of Akt. Further studies showed that p50-mediated upregulation of miR-190 was responsible for the inhibition of PHLPP1 translation by targeting the 3′-untranslated region of its mRNA. Collectively, we have identified a novel function of p50 in modulating p53 protein translation via regulation of the miR-190/PHLPP1/Akt-S6 ribosomal protein pathway.
PMCID: PMC3883870  PMID: 23396362
p50; p53 translation; miR-190; PHLPP1; Akt/S6 ribosomal protein
20.  mTORC1 enhancement of STIM1-mediated store-operated Ca2+ entry constrains tuberous sclerosis complex-related tumor development 
Peng, H | Liu, J | Sun, Q | Chen, R | Wang, Y | Duan, J | Li, C | Li, B | Jing, Y | Chen, X | Mao, Q | Xu, K-F | Walker, CL | Li, J | Wang, J | Zhang, H
Oncogene  2012;32(39):4702-4711.
The protein complex of tuberous sclerosis complex (TSC)1 and TSC2 tumor suppressors is a key negative regulator of mammalian target of rapamycin (mTOR). Hyperactive mTOR signaling due to the loss-of-function of mutations in either TSC1 or TSC2 gene causes TSC, an autosomal dominant disorder featured with benign tumors in multiple organs. As the ubiquitous second messenger calcium (Ca2+) regulates various cellular processes involved in tumorigenesis, we explored the potential role of mTOR in modulation of cellular Ca2+ homeostasis, and in turn the effect of Ca2+ signaling in TSC-related tumor development. We found that loss of Tsc2 potentiated store-operated Ca2+ entry (SOCE) in an mTOR complex 1 (mTORC1)-dependent way. The endoplasmic reticulum Ca2+ sensor, stromal interaction molecule 1 (STIM1), was upregulated in Tsc2-deficient cells, and was suppressed by mTORC1 inhibitor rapamycin. In addition, SOCE repressed AKT1 phosphorylation. Blocking SOCE either by depleting STIM1 or ectopically expressing dominant-negative Orai1 accelerated TSC-related tumor development, likely because of restored AKT1 activity and enhanced tumor angiogenesis. Our data, therefore, suggest that mTORC1 enhancement of store-operated Ca2+ signaling hinders TSC-related tumor growth through suppression of AKT1 signaling. The augmented SOCE by hyperactive mTORC1-STIM1 cascade may contribute to the benign nature of TSC-related tumors. Application of SOCE agonists could thus be a contraindication for TSC patients. In contrast, SOCE agonists should attenuate mTOR inhibitors-mediated AKT reactivation and consequently potentiate their efficacy in the treatment of the patients with TSC.
PMCID: PMC3931471  PMID: 23108404
TSC; mTORC1; STIM1; calcium; tumorigenesis
21.  Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus 
Lu, Yi | Vitart, Veronique | Burdon, Kathryn P | Khor, Chiea Chuen | Bykhovskaya, Yelena | Mirshahi, Alireza | Hewitt, Alex W | Koehn, Demelza | Hysi, Pirro G | Ramdas, Wishal D | Zeller, Tanja | Vithana, Eranga N | Cornes, Belinda K | Tay, Wan-Ting | Tai, E Shyong | Cheng, Ching-Yu | Liu, Jianjun | Foo, Jia-Nee | Saw, Seang Mei | Thorleifsson, Gudmar | Stefansson, Kari | Dimasi, David P | Mills, Richard A | Mountain, Jenny | Ang, Wei | Hoehn, René | Verhoeven, Virginie J M | Grus, Franz | Wolfs, Roger | Castagne, Raphaële | Lackner, Karl J | Springelkamp, Henriët | Yang, Jian | Jonasson, Fridbert | Leung, Dexter Y L | Chen, Li J | Tham, Clement C Y | Rudan, Igor | Vatavuk, Zoran | Hayward, Caroline | Gibson, Jane | Cree, Angela J | MacLeod, Alex | Ennis, Sarah | Polasek, Ozren | Campbell, Harry | Wilson, James F | Viswanathan, Ananth C | Fleck, Brian | Li, Xiaohui | Siscovick, David | Taylor, Kent D | Rotter, Jerome I | Yazar, Seyhan | Ulmer, Megan | Li, Jun | Yaspan, Brian L | Ozel, Ayse B | Richards, Julia E | Moroi, Sayoko E | Haines, Jonathan L | Kang, Jae H | Pasquale, Louis R | Allingham, R Rand | Ashley-Koch, Allison | Mitchell, Paul | Wang, Jie Jin | Wright, Alan F | Pennell, Craig | Spector, Timothy D | Young, Terri L | Klaver, Caroline C W | Martin, Nicholas G | Montgomery, Grant W | Anderson, Michael G | Aung, Tin | Willoughby, Colin E | Wiggs, Janey L | Pang, Chi P | Thorsteinsdottir, Unnur | Lotery, Andrew J | Hammond, Christopher J | van Duijn, Cornelia M | Hauser, Michael A | Rabinowitz, Yaron S | Pfeiffer, Norbert | Mackey, David A | Craig, Jamie E | Macgregor, Stuart | Wong, Tien Y
Nature genetics  2013;45(2):155-163.
Central corneal thickness (CCT) is associated with eye conditions including keratoconus and glaucoma. We performed a meta-analysis on >20,000 individuals in European and Asian populations that identified 16 new loci associated with CCT at genome-wide significance (P < 5 × 10−8). We further showed that 2 CCT-associated loci, FOXO1 and FNDC3B, conferred relatively large risks for keratoconus in 2 cohorts with 874 cases and 6,085 controls (rs2721051 near FOXO1 had odds ratio (OR) = 1.62, 95% confidence interval (CI) = 1.4–1.88, P = 2.7 × 10−10, and rs4894535 in FNDC3B had OR = 1.47, 95% CI = 1.29–1.68, P = 4.9 × 10−9). FNDC3B was also associated with primary open-angle glaucoma (P = 5.6 × 10−4; tested in 3 cohorts with 2,979 cases and 7,399 controls). Further analyses implicate the collagen and extracellular matrix pathways in the regulation of CCT.
PMCID: PMC3720123  PMID: 23291589
22.  CCN3/NOV gene expression in human prostate cancer is directly suppressed by the androgen receptor 
Wu, L | Runkle, C | Jin, H-J | Yu, J | Li, J | Yang, X | Kuzel, T | Lee, C | Yu, J
Oncogene  2013;33(4):504-513.
Androgen receptor (AR) has essential roles during prostate cancer progression. With genome-wide AR-binding sites mapped to high resolution, studies have recently reported AR as a transcriptional repressor. How AR inhibits gene expression and how this contributes to prostate cancer, however, are incompletely understood. Through meta-analysis of microarray data, here we nominate nephroblastoma overexpressed (NOV) as a top androgen-repressed gene. We show that NOV is directly suppressed by androgen through the AR. AR occupies the NOV enhancer and communicates with the NOV promoter through DNA looping. AR activation recruits the polycomb group protein EZH2, which subsequently catalyzes histone H3 lysine 27 tri-methylation around the NOV promoter, thus leading to repressive chromatin remodeling and epigenetic silencing. Concordantly, AR and EZH2 inhibition synergistically restored NOV expression. NOV is downregulated in human prostate cancer wherein AR and EZH2 are upregulated. Functionally, NOV inhibits prostate cancer cell growth in vitro and in vivo. NOV reconstitution reverses androgen-induced cell growth and NOV knockdown drives androgen-independent cell growth. In addition, NOV expression is restored by hormone-deprivation therapies in mice and prostate cancer patients. Therefore, using NOV as a model gene we gained further understanding of the mechanisms underlying AR-mediated transcriptional repression. Our findings establish a tumor-suppressive role of NOV in prostate cancer and suggest that one important, but previously underestimated, manner by which AR contributes to prostate cancer progression is through inhibition of key tumor-suppressor genes.
PMCID: PMC3796014  PMID: 23318417
androgen receptor; polycomb EZH2; NOV; CCN3
23.  Microalloying Ultrafine Grained Al Alloys with Enhanced Ductility 
Scientific Reports  2014;4:3605.
Bulk ultrafine grained (UFG)/nanocrystal metals possess exceptional strength but normally poor ductility and thermal stability, which hinder their practical applications especially in high-temperature environments. Through microalloying strategy that enables the control of grains and precipitations in nanostructured regime, here we design and successfully produce a highly microstructure-stable UFG Al-Cu-Sc alloy with ~275% increment in ductility and simultaneously ~50% enhancement in yield strength compared with its Sc-free counterpart. Although the precipitations in UFG alloys are usually preferentially occurred at grain boundaries even at room temperature, minor Sc addition into the UFG Al-Cu alloys is found to effectively stabilize the as-processed microstructure, strongly suppress the θ-Al2Cu phase precipitation at grain boundary, and remarkably promote the θ′-Al2Cu nanoparticles dispersed in the grain interior in artificial aging. A similar microalloying strategy is expected to be equally effective for other UFG heat-treatable alloys.
PMCID: PMC3884224  PMID: 24398915
24.  Corrigendum 
Li, J | Sima, W | Ouyang, B | Wang, T | Ziaf, K | Luo, Z | Liu, L | Li, H | Chen, M | Huang, Y | Feng, Y | Hao, Y | Ye, Z
PMCID: PMC3873127

Results 1-25 (340)